

Bachelorarbeit

XRF-Messungen und -Simulationen an antiken Münzen

Mathematisch-Naturwissenschaftliche Fakultät

der Universität zu Köln

Studiengang B. Sc. Chemie

vorgelegt von

Malte Overkemping

Köln, Juli 2023

Eidesstattliche Erklärung

Hiermit versichere ich, Malte Overkemping, an Eides statt, dass ich die vorliegende Arbeit mit dem Thema

XRF-Messungen und -Simulationen an antiken Münzen

selbstständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften entnommen wurden, sind als solche kenntlich gemacht.

Die Arbeit ist in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer anderen Prüfung noch nicht vorgelegt worden.

Ich versichere, dass die eingereichte elektronische Fassung der eingereichten Druckfassung vollständig entspricht.

(Ort, Datum)

(Unterschrift)

Danksagung

Meine besondere Dankbarkeit möchte ich Dr. Erik Strub vom Institut für Nuklearchemie aussprechen. Ohne Herrn Dr. Strub wäre diese Bachelorarbeit nicht entstanden. Ich möchte mich bei Ihm für die professionelle und menschliche Betreuung während der Zeit bedanken. Herr Dr. Strub hatte immer ein offenes Ohr für meine Anliegen und konnte immer mit der passenden Hilfestellung dienen.

Herrn Dr. Gregor Staab aus der Altertumskunde möchte ich ebenfalls großen Dank aussprechen. Er hat mir den Zugang zu der Münzsammlung der Universität und zum Röntgenfluoreszenzmessgerät ermöglicht. Ich danke für viele sehr angenehme Gespräche und für die Bereitschaft einige der Münzen mit verschiedenen Analysemethoden untersuchen zu dürfen.

Des Weiteren möchte ich dem Herrn Dr. Markus Schiffer aus dem Institut für Kernphysik danken für die Möglichkeit die PIXE-Messungen dort durchzuführen.

Für die ICP-MS-Messungen möchte ich mich beim Institut für Geologie bedanken.

Auch bei allen nicht namentlich erwähnten Mitarbeitern der genannten Institute möchte ich mich bedanken.

Meinem persönlichem Mentor Herrn Franz Borgers bin ich Dankbar für seine Jahre überdauernde Unterstützung in meinem Studium und meinem Werdegang als Person. Ohne seine Unterstützung wäre mein Studium nicht möglich gewesen.

Schlussendlich möchte ich mich bei meiner Familie für den Rückhalt während meines Studiums und für das rege Interesse an meiner Arbeit bedanken.

Inhaltsverzeichnis

Deckblatt	1			
Eidesstattliche Erklärung				
Danksagung				
Inhaltsverzeichnis	4			
Tabellenverzeichnis	6			
Abbildungsverzeichnis	8			
Abstrakt	10			
1. Einleitung und Motivation	12			
1.1. Non-destruktive Analsysemethoden	13			
1.1.1. Röntgenfluoreszenz	14			
1.1.2. Röntgenfluoreszenzanalyse	15			
1.1.3. Partikel-induzierte Röntgenemission	17			
1.1.4. Protonenquelle	18			
1.1.5. Röntgenröhre	19			
1.1.6. Benennung der Röntgenfluoreszenzlinien	21			
1.1.7. ICP-Massenspektrometrie	22			
1.1.8. Informationstiefe von ICP-MS, XRF und PIXE	23			
1.1.9. XMI-MSIM Simulation von XRF-Spektren	24			
2.1. Messdurchführung XRF	25			
2.2. Messdurchführung PIXE	28			
2.3. Probenvorbereitung und Durchführung ICP-MS	30			
2.4. Dateneingabe XMI-MSIM				
3. Auswertung und Ergebnisse				
3.1. Auswertung XRF	33			
3.1.1. Statistische Auswertung XRF	33			

3.1.2. Ve	rgleich der Mittelwerte der Münzen	37
3.1.3.Kor	relation zwischen Elementen	41
3.2. Auswertung	Simulationen	44
3.2.1. Ku 44	pfer-Silber-Variations-Simulationen	
3.2.2. Wi	nkel-Variations-Simulation	50
3.3. ICP-MS-Aus	wertung	54
3.4. PIXE verglicl	hen mit XRF	66
4. Diskussion und Ausblid	ck	74
5. Literaturverzeichnis		76
6. Anhang		78

Tabellenverzeichnis

Tabelle 1: Benennung verschiedener Elektronenübergänge nach IUPAC und Siegbahn-Notation.Aufgelistet sind jeweils das Zielniveau und das Ursprungsniveau.21

Tabelle 2: Münzen kategorisiert nach Nero und Augustus. 17 Münzen sind der Zeit von Augustuszuzuorden, 7 Münzen der Zeit Neros.25

Tabelle 3: Übersicht über die für PIXE ausgesuchten Münzen. Die Münzen ALSK_0047 und _0048gehören zeitlich in die Zeit von Augustus die anderen beiden Münzen in die Zeit Neros28

Tabelle 4: Einwaagen der entnommen Proben für die ICP-MS-Messungen

Tabelle 5: Durchschnittliche Werte für Kupfer und Silber der mit XRF vermessenen Münzen. DieWerte sind in wt% angegeben. Der positive Fehler wird durch das dritte Quartil und der negativeFehler durch das erste Quartil dargestellt.34

Tabelle 6: Durchschnittliche Werte für Zink, Zinn, Blei Gold und Eisen der XRF-Messungen. Die Werte
sind in wt% angegeben. Der positive Fehler wird durch das dritte Quartil und der negative Fehler
durch das erste Quartil dargestellt.State State
35

Tabelle 7: Pearsons R-Werte für die Korrelation zwischen den Messwerten von Kupfer, Silber und Gold. 41

Tabelle 8: Intensitäten von Kupfer und Silber der Simulationsreihe Kupfer-Silber-Variation mitzugehörigen Angaben in wt%.44

Tabelle 9: Tabelle mit den berechneten Werten des Einflussfaktors der Intensitäten von Kupfer und Silber. 46

Tabelle 10: Korrigierte Intensitäten von Kupfer und Silber und korrigiertes Verhältnis von Kupfer und Silber. 47

 Tabelle 11: Intensitäten von Kupfer, Silber und das Intensitätsverhältnis I(Cu) / I(Ag).
 50

Tabelle 12: Auflistur	a der durch ICF	P-MS detektierten	Atome in den	Referenzlösungen.	54
-----------------------	-----------------	-------------------	--------------	-------------------	----

Tabelle 13: Massenanteile der Elemente bestimmt durch ICP-MS.

Tabelle 14: Einwaagen der Proben und Differenz der Einwaage und der durch ICP-MS erhaltenen Masse 55

 Tabelle 15: Gewichtsprozentuale Anteile der Elemente an der Probenzusammensetzung.
 56

Tabelle 16: XRF-Messungen, die in der Nähe der Probenentnahmestellen für ICP-MS_01 und ICP-MS_02 gemessen wurden.57

Tabelle 17: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_03 gemessen wurden. 58

Tabelle 18: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_05 gemessenwurden.60

Tabelle 19: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_06 gemessenwurden.61

Tabelle 20: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_07 gemessen wurden. 62

Tabelle 21: Auflistung der Abweichungen der Elementzusammensetzungen von ICP-MS_01 zu XRF-Messungen, die in der Nähe der Probenentnahmestelle durchgeführt wurden.64

30

55

Tabelle 22: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0047 von Kupfer und Silber.

Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %. 68

Tabelle 23: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0047. Die Menge anSpurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in%, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber.68

Tabelle 24: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0048 von Kupfer und Silber.

Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %. 69

Tabelle 25: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0048. Die Menge anSpurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in%, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber.69

Tabelle 26: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0171 von Kupfer und Silber.

Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %. **70**

Tabelle 27: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0171. Die Menge anSpurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in%, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber.70

Tabelle 28: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0171_NO1 von Kupfer und Silber.

Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %. 71

Tabelle 29: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0171_NO1. Die Menge an Spurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in %, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber. **71**

Tabelle 30: Berechnete Mittelwerte der verschiedenen Messreihen von PIXE und XRF. Aufgelistetsind jeweils die Münzen mit der zugehörigen Messmethode gefolgt von den Verhältnissen zwischenKupfer und Silber und dem zugehörigen Fehler .72

Abbildungsverzeichnis

Abbildung 1: Skala für elektromagnetische Strahlung. Eingezeichnet sind die verschiedenen Wellenlängen- und Frequenzbereiche der verschiedenen Strahlungsarten. 13

Abbildung 2: Schematische Darstellung der Anregung von Atomen und der Schalenübergänge[[]. 14

Abbildung 3: Aufbau für eine PIXE-Messung. Zu erkennen sind die wichtigsten Komponenten. Die Teilchenstrahlung wird in einem in einem Beschleuniger erzeugt und mithilfe von Spulen auf die Probe gerichtet. Die Probe emittiert schließlich Röntgenfluoreszenz auf einen Detektor. 17

Abbildung 4: Aufbau einer Röntgenröhre.

19

Abbildung 5: Röntgenspektrum von Rhodium. Aufgetragen ist die Intensität über die Energie. Die Pfeile markieren die charakteristischen Röntgenenergien von Rhodium. Ds Spektrum wurde mithilfe von XMI-MSIM^[7] berechnet. **20**

Abbildung 6: Aufbau einer ICP-MS-Apparatur. Zu erkennen sind die einzelnen Bereiche Ionenquelle, Analysator und Detektor sind zu erkennen. 22

Abbildung 7: Messpunkte auf einer Münzseite. Beide Seiten wurden nach dem gleichen Prinzip vermessen. 25

Abbildung 8: Probenleiter mit den Münzen ALSK_0047 und ALSK_0048. Unter den beiden Münzen sind ein Gold- und ein Tantalstandard befestigt. 29

Abbildung 9: Eingabe Parameter für eine Röntgenröhre mit Rhodiumanode für die Simulationsspektren. 31

Abbildung 10: Eingabedaten für einen Röntgenstrahl senkrecht zur Probe und einem Detektorwinkel von 26,5 ° zur Röntgenröhre. **31**

Abbildung 11: XRF-Spektrum von ALSK_0047. Aufgetragen ist logarithmisch die Intensität über die Energie in keV. Die einzelnen Peaks sind mit der zugehörigen charakteristischen Strahlung beschriftet. 33

Abbildung 12: Auftragung der Mittelwerte von Kupfer (links) und Silber (rechts) in wt%. Angegeben sind des Weiteren der positive und der negative Fehler. 37

Abbildung 13: Auftragung der Mittelwerte von Zink (links) und Zinn (rechts) in wt%. Angegeben sind des Weiteren der positive und der negative Fehler. **38**

Abbildung 14: Auftragung der Mittelwerte von Blei (links) und Gold (rechts) in wt%. Angegeben sind des Weiteren der positive und der negative Fehler. 39

Abbildung 15: Auftragung der Mittelwerte von Eisen in wt%. Angegeben sind des Weiteren der positive und der negative Fehler. 39

Abbildung 16: Auftragung der Goldmesswerte über die Silbermesswerte zur Überprüfung der linearen Korrelation zwischen den beiden Elementen. (Augustus links) (Nero rechts) 42

Abbildung 17: Auftragung von Ag(Au) in wt% der Mittelwerte für die Münzen zur Zeit von Augustus (links) und Nero (rechts). 43

Abbildung 18: Auftragung der Intensitäten von Kupfer du Silber in Abhängigkeit von Cu / wt%. 45

Abbildung 19: Auftragung des korrigierten Intensitätsverhältnisses über das normale Intensitätsverhältnis von Kupfer und Silber. **48**

Abbildung 20: Auftragung der Intensitäten I(Cu) und I(Ag) über den Einfallswinkel des Röntgenstrahls. Die genauen Daten sind Tabelle 11 zu entnehmen. **51** Abbildung 21: Auftragung des Verhältnisses I(Cu) / I(Ag) über den Einfallswinkel der Röntgenstrahlung. 52

Abbildung 22: Logarithmische Auftragung der in Tabelle 16 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen. 57

Abbildung 23: Logarithmische Auftragung der in Tabelle 17 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen. 59

Abbildung 24: Logarithmische Auftragung der in Tabelle 18 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen. **60**

Abbildung 25: Logarithmische Auftragung der in Tabelle 19 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen. **61**

Abbildung 26: Logarithmische Auftragung der in Tabelle 20 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen. 63

Abbildung 27: Auftragung der Intensität über die Detektorkanäle der PIXE-Messung von PIXE_ALSK_0047_R_01. Der Peak von Cu-K_{$\alpha1$} (roter Pfeil) ist bei Kanal 322 zu finden der von Ag-K_{$\alpha1$} (blauer Pfeil) bei Kanal 998. **67**

Abstrakt

Die Universität zu Köln hat etwa 12000 Münzen, welche in der Abteilung Numismatik in der Altertumsforschung untergebracht sind. Die Sammlung erstreckt sich über mehrere Jahrhunderte und umfasst Münzen aus der griechischen, der römischen, der Byzantinischen Kaiserzeit aus dem Raum Alexandria und noch viele weitere Münzen aus dem Raum des östlichen Mittelmeers und des Schwarzen Meeres. Für Archäologische Funde sind verschiedene Daten von Bedeutung. Im Fachgebiet der Numismatik ist neben dem Alter, der Währung, dem Wert, der Dichte, der Herkunft und dem Gewicht auch die chemische Zusammensetzung von Interesse. Bevorzugt werden in diesem Fachgebiet zerstörungsfreie Analysemethoden verwendet. Anhand einer Zusammensetzungsanalyse können Rückschlüsse auf die Echtheit eines Artefakts gezogen werden. Des Weiteren kann eine Elementaranalyse Informationen über den Herkunftsort der Erze für die Herstellung der Münzen geben. Für diese Arbeit wurden Münzen mit drei Analysemethoden untersucht. Zur Ermittlung der Zusammensetzung der Münzen wurden zwei non-destruktive und eine destruktive Analysemethode genutzt. Zu den non-destruktiven Methoden gehören die Protoneninduzierte Röntgenemission (PIXE) und die Röntgenfluoreszenzanalyse (XRF). Des Weiteren wurde die Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) eingesetzt, welche als destruktive Analysemethode einzuordnen ist. Diese drei Messmethoden wurden anschließend gegenübergestellt, um die Unterschiede zwischen den drei Methoden zu beschreiben. Um den geometrischen Einfluss des Messaufbaus zu untersuchen wurden durch Monte-Carlo Methoden Spektren mit verschiedenen Aufbauten berechnet. Dabei wurden Probendicke, sowie die Winkel in denen die Röntgenröhre und der Detektor zur Probe stehen und die Zusammensetzung der Probe variiert. Mithilfe dieser Simulationen konnte ein Korrekturfaktor für die von der Zusammensetzung abhängigen Kupfer- und Silberintensitäten bestimmt werden. Durch die Winkelabhängigen Simulationen kann eine Abschätzung der Unsicherheiten, die durch die Oberflächengeometrie verursacht wird, vollzogen werden. Trotz dieser Korrektur ist XRF vor allem für qualitative Elementaranalysen geeignet, da eine große Anzahl an Proben in recht kurzer Zeit untersucht werden kann. Die ICP-MS ist zwar sehr präzise, wird jedoch sehr stark von mikroskopischen Inhomogenitäten beeinflusst, welche unter anderem durch die sehr kleine Probenmenge stark ins Gewicht fallen. Mit Nutzung der

entsprechenden Auswertprogramme ist PIXE für eine präzise Elementaranalyse am besten geeignet, da die Unsicherheiten verglichen mit XRF deutlich geringer sind.

1. Einleitung und Motivation

Bei der naturwissenschaftlichen Untersuchung von archäologischen Objekten sind Analysemethoden essentiell, um Phänomene greifbar zu machen. Dabei ist die Verlässlichkeit einer Methode von besonderer Bedeutung. Im Allgemeinen gibt es zwei Kategorien von Verfahren. Unterschieden wird zwischen destruktiv und nondestruktiv.

In dieser Arbeit werden die drei Analysemethoden Protoneninduzierte Röntgenemission, Röntgenfluoreszenzanalyse und die Massenspektrometrie mit induktiv gekoppeltem Plasma miteinander verglichen. Als Messobjekte dienen 24 alexandrinische Tetradrachmen aus dem ersten Jahrhundert nach Christus. Dabei liegt der Fokus auf den Verhältnissen der beiden Hauptkomponenten Kupfer und Silber in den Proben. Die Abhängigkeit der Analyseergebnisse von der Schichttiefe sollte, zusätzlich zu der generellen Aussagekraft der einzelnen Messergebnisse, auf diese Weise untersucht werden. Die Protoneninduzierte Röntgenemission (PIXE) wurde unter anderem bereits von Denker et al. genutzt, um historische Münzen zu untersuchen^[1].Auch Röntgenfluoreszenzanalysen sind vielfach an Münzen und anderen Artefakten durchgeführt worden^{[2][3]}. Es wurden XRF-Untersuchungen an antiken Gläsern^[4], antiken indischen Münzen^[5], oder Bronzeobjekten^[6] durchgeführt. Im letzteren Fall wurden XRF-Daten mithilfe von Monte-Carlo-Simulationen erweitert, beziehungsweise optimiert. Des Weiteren werden verschiedene Einflussfaktoren auf die Röntgenfluoreszenzanalyse mittels Monte-Carlo-Simulationen untersucht. Dazu wird das Simulationsprogram XMI-MSIM verwendet^[7]. Im Allgemeinen wird angenommen, dass die Probenoberfläche eben ist und dass der Röntgenstrahl senkrecht auf diese trifft. Diese beiden Faktoren sind nicht bei allen Proben gegeben. dass die Oberflächenstruktur, sowie der Einfallswinkel des Daraus folgt, Röntgenstrahls und damit verbunden der Detektorwinkel einen nicht zu vernachlässigenden Einfluss auf die Messergebnisse haben. Mithilfe des Simulationsprogramms XMI-MSIM sollen Röntgenfluoreszenzspektren berechnet werden um gewisse Einflüsse korrigieren zu können. Zum Vergleich wurden die Münzen auch mit anderen Methoden untersucht. Zu diesen Methoden gehören ICP-MS und PIXE. Auch diese Methoden wurden bereits im archäometrischen Kontext eingesetzt^{[1][8]}.

1.1. Non-destruktive Analysemethoden

Zu den zerstörungsfreien Methoden gehören unter anderem alle Formen der Strahlungsbasierten Verfahren. Diese werden auch Spektroskopieverfahren genannt und lösen durch verschiedene Energien physikalische Prozesse im Atom beziehungsweise Molekül aus, welche detektiert werden können. ← steigende Frequenz v in Hz

Abbildung 1: Skala für elektromagnetische Strahlung. Eingezeichnet sind die verschiedenen Wellenlängen- und Frequenzbereiche der verschiedenen Strahlungsarten^[9].

In der NMR-Spektroskopie werden unter anderem Radiowellen verwendet, um von einem niederenergetischen Kernspinniveau in ein höheres Niveau anzuregen. Die Wellenlängen von Radiowellen liegen im Bereich von 1-10² m, wie Abbildung 1 zu entnehmen. Auf die Radiowellen folgen die Mikrowellen mit Wellenlängen im Bereich von 10⁻³-1 m. Diese werden in der Rotationsspektroskopie verwendet. Die $10^{-3} \cdot 10^{-6}$ Wellenlängen von Infrarotstrahlung mit m wird für die Schwingungsspektroskopie verwendet. Der Bereich der UV-Strahlung und des sichtbaren Lichts wird in der UV/Vis-Spektroskopie zur Anregung von äußeren Elektronen eines Atoms verwendet. Die angeregten Elektronen senden beim Wechsel in den nicht angeregten Zustand ein Photon mit einer charakteristischen Energie aus. Die Wellenlänge beträgt etwa $10^{-6} - 10^{-8}$ m. Die nächste Art der elektromagnetischen Strahlung die Röntgenstrahlung mit Wellenlängen von 10⁻⁹ - 10⁻¹¹ m wird in der Röntgenfluoreszenzanalyse eingesetzt.

1.1.1. Röntgenfluoreszenz

Röntgenfluoreszenz entsteht, wenn ein Elektron eines Atoms, von einem energetisch höheren Niveau auf ein niedrigeres Niveau übergeht. Damit ein solcher Prozess stattfinden kann, muss auf einem niederenergetischen Niveau ein freier Platz für dieses Elektron vorhanden sein. Die verschiedenen Energieniveaus können als Schalenmodell dargestellt werden.

Abbildung 2: Schematische Darstellung der Anregung von Atomen und der Schalenübergänge^[10].

Trifft elektromagnetische Strahlung, oder Teilchenstrahlung mit ausreichender Energie auf ein innenliegendes Elektron eines Atoms, so kann dieses den Atomverband verlassen, wie in Abbildung 2 zu erkennen. Nach diesem Prozess befindet sich das Atom in einem angeregten Zustand, da eine energetisch niedrige Position im Atom nicht von einem Elektron besetzt ist. Dieses Elektronenloch kann nun, wie in Abbildung 2 gezeigt, von verschiedenen weiter außenliegenden Elektronen besetzt werden. Die Energiedifferenz zwischen den beiden Schalen wird dabei in Form eines Photons ausgesendet. Die Energiedifferenzen zwischen den einzelnen Elektronenschalen sind von Element zu Element unterschiedlich, da jedes Element aufgrund seiner unterschiedlichen Kernladungszahl ein anderes elektrisches Feld erzeugt. Das Resultat ist, jedes Element hat eine für das Element charakteristische Röntgenfluoreszenz. Mithilfe der weiter unten erläuterten *Siegbahn*-Notation, oder IUPAC-Notation können diese Übergänge systematisch benannt werden(siehe Abschnitt 1.1.6.). Das Phänomen der charakteristischen Röntgenstrahlung wird bei der Protonen-induzierten Röntgenemission und der Röntgenfluoreszenzanalyse ausgenutzt.

1.1.2. Röntgenfluoreszenzanalyse

Bei der Röntgenfluoreszenzanalyse wird eine Probe mithilfe von hochenergetischer Röntgenstrahlung angeregt. Die Energie dieser Strahlung liegt bei dem in dieser Arbeit verwendeten Gerät im Bereich von bis zu 50 keV. Durch diese Anregung entsteht Röntgenfluoreszenz, durch welche qualitative, sowie quantitative Aussagen über die Probenzusammensetzung getroffen werden können. Da jedes Element nach einer derartigen Anregung Röntgenphotonen mit charakteristischen Energien aussendet, kann anhand dieser Energien bestimmt werden, welche Elemente in der Probe vorhanden sind.

$$\int_{0}^{x} dx' I_{E_{0}} \cdot e^{-\frac{\mu_{i,E_{0}}}{\sin\varphi_{in}}\rho_{i}x'} \cdot \tau_{i,E_{0}} \omega_{X_{i}} g_{l,X_{i}} \frac{j_{X_{i}}-1}{j_{X_{i}}} \rho_{i} \frac{1}{\sin\varphi_{in}} \cdot e^{-\frac{\mu_{i,E_{0}}}{\sin\varphi_{out}}\rho_{i}x'} \cdot \frac{\Omega 0_{Det}}{4\pi} \cdot \varepsilon_{Det,E_{fl}} = I_{E_{i,fl}}(x)$$

Die quantitative Analyse kann mithilfe der gemessenen Intensitäten der emittierten Röntgenstrahlung durchgeführt werden. Die Intensität der gemessenen Röntgenstrahlung hängt wiederum von einigen Einflüssen ab, wie in der vorherigen Formel ersichtlich. Diese Einflussfaktoren sind die Dämpfung des einfallenden Strahls (rot), die Wahrscheinlichkeit der Photonenentstehung (blau), die Dämpfung beim Verlassen der Probe (grün), der Raumwinkel des Detektors (schwarz) und die Detektoreffizienz (orange)^[11].

Als Strahlungsquelle können eine Synchrotronquelle, ein Primärstrahler, oder eine Röntgenröhre genutzt werden. Zum detektieren der Röntgenfluoreszenz können ebenfalls verschiedene Detektoren eingesetzt werden, wie Szintillationszähler, Zählrohre, oder Halbleiterdetektoren. Aufgrund der geringen Energie der Röntgenfluoreszenz von leichten Elementen, wird deren Strahlung fast vollständig in der Probe selbst absorbiert, weshalb Elemente mit einer Kernladungszahl Z<11 schlecht bis gar nicht durch Röntgenfluoreszenz ermittelt werden können. In der

vorliegenden Arbeit wurde ein mobiles Röntgenfluoreszenzspektrometer der Firma XGLab verwendet (siehe Abschnitt 2.1.).

Die Röntgenfluoreszenzanalyse wird in der Archäometrie bevorzugt eingesetzt, da die Messungen recht schnell und einfach durchzuführen sind und die Röntgenfluoreszenzmessgeräte heutzutage sehr kompakt sind, sodass Messungen auch im Feld durchgeführt werden können. Des Weiteren handelt es sich bei der Röntgenfluoreszenzanalyse um eine zerstörungsfreie Analysemethode, was gerade in der Altertumsforschung von Vorteil ist, da die Fundstücke die untersucht werden intakt bleiben.

1.1.3 Partikel-induzierte Röntgenemission

Abbildung 3: Aufbau für eine PIXE-Messung. Zu erkennen sind die wichtigsten Komponenten. Die Teilchenstrahlung wird in einem in einem Beschleuniger erzeugt und mithilfe von Spulen auf die Probe gerichtet. Die Probe emittiert schließlich Röntgenfluoreszenz auf einen Detektor^[12].

Die Partikel-induzierte Röntgenemission (particle-induced X-ray-emission/PIXE) wird ähnlich wie die Röntgenfluoreszenzanalyse zur Untersuchung der Elementzusammensetzung einer Probe verwendet. Bei einer Messung wird eine Probe mit einem Ionenstrahl beschossen, meistens mit einem Protonenstrahl. Mithilfe des Protonenstrahls wird wie bei der Röntgenfluoreszenzanalyse charakteristische Röntgenstrahlung der Elemente erzeugt. Die Nachweisgrenze von Elementen und auch die quantitative Bestimmung eines Elements hängen stark von der Eindringtiefe **Protonenstrahls** die des ab. denn Absorption der charakteristischen Röntgenstrahlung der gemessenen Atome innerhalb der Probe selbst kann durch die Schichtdicke die überwunden werden muss stark zunehmen. Die Bestimmung der Elemente qualitativ und quantitativ funktioniert analog zur Röntgenfluoreszenzanalyse. Der schematische Aufbau für die PIXE-Analyse ist in der vorhergehenden Abbildung 3 dargestellt. Der wesentliche Unterschied zur Röntgenfluoreszenzanalyse ist, dass in der Röntgenfluoreszenzanalyse eine Röntgenröhre als Strahlungsquelle eingesetzt wird und bei der Protoneninduzierten Röntgenemission ein Teilchenbeschleuniger. Unter gewissen Umständen ist PIXE nicht zerstörungsfrei, denn bei einer Energie des Protonenstrahls oberhalb der Coulombbarriere E > E_C wird die Probe aktiviert. Das bedeutet die Protonen des Protonenstrahls reagieren mit den Atomkernen der Probe. Bei einer Energie des Protonstrahls E > 2 MeV kann es zu einer Aktivierung der Probe kommen. Im Allgemeinen sind die für PIXE benötigten Flussdichten jedoch so gering, dass praktisch keine Aktivierung resultiert. Zur quantitativen Analyse wird bei PIXE folgende Formel^[13] benötigt:

$$N_{\chi} = \frac{Q}{e} \frac{N_0}{A} \frac{\Omega}{4\pi} \varepsilon(E_{\chi}) \frac{C}{\cos\vartheta} \int_{E_{Iniz}}^0 \sigma_p(E_{\chi}, E_p) \frac{dE_p}{S(E_p)} e^{-\mu(E_{\chi}) \frac{dS}{\cos\varphi} \int_{E_{Iniz}}^{E_p} \frac{dT}{S(T)}}$$

In Rot ist der Term für den Raumwinkel des Detektors angegeben, in Grün die Detektoreffizienz. Der blau umrandete Term beschreibt die Wahrscheinlichkeit der Photonenentstehung und der der violett hinterlegte Term beschreibt die Dämpfung der Strahlung beim Verlassen der Probe, wohingegen der gelb hinterlegte Term die Dämpfung des einfallenden Protonenstrahls beschreibt..

Die quantitative Auswertung von PIXE-Daten ist recht komplex und wird in der Praxis mittels einer Software vorgenommen, wie beispielsweise GUPIX^[14]

1.1.4 Protonenquelle

Der Protonenstrahl wird durch einen Teilchenbeschleuniger erzeugt. Als Teilchenbeschleuniger wurde in dieser Arbeit der 10-MeV-Tandembeschleuniger des Instituts für Kernphysik genutzt. Bei einem Tandembeschleuniger werden zunächst negativ geladene Wasserstoffionen beschleunigt. Diese Ionen durchfliegen in der Mitte des Beschleunigers eine Kohlenstofffolie, oder einen Gasstrom (Stripper), wodurch die Ionen alle Elektronen verlieren und als Protonen vorliegen. Mithilfe dieser Technik werden die lonen zweimal mit demselben Energiebetrag beschleunigt. Typische Beschleunigungsspannungen liegen für derartige Beschleuniger bei 5-25 MV. Dieser Prozess findet unter Hochvakuum von 10⁻⁷ mbar statt. Die beschleunigten Protonen können anschließend für Protoneninduzierte Röntgenemission genutzt werden zur Anregung von charakteristischer Röntgenstrahlung.

1.1.5. Röntgenröhre

Abbildung 4: Aufbau einer Röntgenröhre^[15].

Zur Erzeugung von hochenergetischen Röntgenstrahlen wird häufig eine Röntgenröhre genutzt. Eine Röntgenröhre besteht aus einer Kathode und einer Anode, welche sich in einem evakuierten Gefäß befinden. Heutzutage werden die Kathode und Anode meist in Metall-Keramiken eingebaut, jedoch wurden zuvor evakuierte Glasrohre genutzt, woher die Röntgenröhre auch Ihren Namen hat. An die Kathode wird eine Spannung angelegt, damit ein Strom durch diese fließt. Dieser Stromfluss erhöht die Temperatur des Kathodendrahts, weshalb sich an dessen Oberfläche freie Elektronen bilden. Wird eine weitere Spannung zwischen Kathode und Anode angelegt, so werden diese freien Elektronen zur Anode beschleunigt. Diese Spannung wird Beschleunigungsspannung genannt. Durch den Beschuss des Anodenmaterials mit den beschleunigten Elektronen entsteht unter anderem Bremsstrahlung und charakteristische Röntgenstrahlung des Anodenmaterials. Bremsstrahlung entsteht, wenn beschleunigte Elektronen von den positiven Atomkernen des Anodenmaterials abgelenkt werden und dadurch abgebremst, oder beschleunigt werden. Die Energie der Bremsstrahlung hängt von der Beschleunigungsspannung der Röntgenröhre ab. Bei einer Beschleunigungsenergie der Elektronen von U=50 kV, beträgt der Wert der Bremsstrahlung wenige keV bis maximal 50 keV. Die charakteristische Röntgenstrahlung des Anodenmaterials entsteht wie bereits unter dem Punkt Röntgenfluoreszenz beschrieben. Die beschleunigten Elektronen schlagen innere Elektronen aus den Atomhüllen des Anodenmaterials, wodurch sich das Atom in einem angeregten Zustand befindet. Ein weiteraußenliegendes Elektron wechselt in die innenliegende Schale, wobei die Energiedifferenz in Form eines Photons abgegeben wird. In der folgenden Abbildung 5 ist das charakteristische Röntgenemissionsspektrum von einer Rhodiumanode dargestellt. Bei dem Spektrum handelt es sich um ein Bremsstrahlungsspektrum mit Peaks der charakteristischen Röntgenenergie des Rhodiums. Die charakteristischen Röntgenemissionen von Rhodium sind bei L_{α} =2,697 keV, L_{β} =2,834 keV (beide blauer Pfeil), K_{α} =20,216 keV (grüner Pfeil) und K_{β} =22,724 keV (roter Pfeil) zu finden. Die jeweiligen Energien sind nach der *Siegbahn*-Notation benannt (siehe Abschnitt 1.1.6.).

Abbildung 5: Röntgenspektrum von Rhodium. Aufgetragen ist die Intensität über die Energie. Die Pfeile markieren die charakteristischen Röntgenenergien von Rhodium. Ds Spektrum wurde mithilfe von XMI-MSIM^[7] berechnet.

Zielniveau	Ursprungsniveau	IUPAC	Siegbahn-Notation
К	L ₃	K-L ₃	K _{α1}
К	L ₂	K-L ₂	L _{α1}
L ₃	M ₅	L ₃ -M ₅	$L_{\alpha 1}$
L ₂	M_4	L ₂ -M ₄	$L_{\beta 1}$
M ₅	N ₇	M ₅ -N ₇	$M_{\alpha 1}$

1.1.6. Benennung der Röntgenfluoreszenzlinien

In der IUPAC-Notation wird zunächst die Zielschale genannt, gefolgt von der Schale und Unterschale, von der der Übergang stattfindet. Betrachtet man beispielswese den Übergang K-L₃ laut IUPAC-Notation, so bedeutet dies, dass ein Elektron aus der L-Schale, spezifischer der L₃-Schale, einen Übergang in die K-Schale vollzieht. In der Siegbahn-Notation wird dieser Übergang mit $K_{\alpha 1}$ dargestellt, wie der vorherigen Tabelle 1 zu entnehmen ist. Das K gibt erneut die Zielschale, der griechische Buchstabe beschreibt aus welcher Schale das Elektron in die weiter innenliegende wechselt. Nach IUPAC und auch in der Siegbahn-Notation werden die Schalen von K startend nach außen benannt. Das bedeutet auf K folgt L, M, N. Die Zahl der Unterschalen nimmt von der inneren zu benachbarten äußeren Schale immer um zwei zu. Das bedeutet, es gibt keine Unterschalen für K, drei für die L-Schale, 5 für die M-Schale und 7 für die N-Schale. Wird ein Elektronenübergang durch die Siegbahn-Notation beschrieben, wird lediglich die Zielschale explizit genannt. Der Buchstabe α bedeutet, der Übergang erfolgt aus der direkt benachbarten Schale, der Buchstabe β bedeutet, der Übergang findet aus der übernächsten Schale, oder einer noch weiter außenliegenden Schale statt. Wird der Übergang M₅-N₇ betrachtet, so muss es sich dabei in der Siegbahn-Notation um den Übergang M α_1 handeln, da das Zielniveau die M-Schale ist. Das Ursprungsniveau ist die N-Schale, weshalb als Zusatz zur Zielschalenbezeichnung die Indizes α_1 verwendet werden müssen. Dies wird durch Tabelle 1 bestätigt.

1.1.7. ICP-Massenspektrometrie

Die Massenspektrometrie mit induktiv gekoppeltem Plasma findet eine große Bedeutung in der Spurenelementanalyse aufgrund ihrer niedrigen Nachweisgrenze im Bereich von ng/L. Durch ein hochfrequentes elektromagnetisches Feld wird in einem Argongasstrom ein Plasma erzeugt. In dem Plasma kann die Probe auf mehrere Tausend Grad Celsius erhitzt werden, wodurch die Probe in Ihre einzelnen Bestandteile zerfällt und ionisiert wird. Flüssige Proben, wie beispielsweise in Säure gelöste Metalle werden im Vorhinein durch eine Pumpe angesaugt und mithilfe eines Zerstäubers unter Argongasatmosphäre zu einem Aerosol zerstäubt. Der Zerstäuber befindet sich in der Sprühkammer. Nach der Sprühkammer wird das Aerosol durch ein Injektionsrohr geleitet, in dem zu große Aerosoltropfen an den Wänden kondensieren und abfließen. Tropfen die durch das Injektionsrohr geleitet wurden, werden daraufhin im Plasma ionisiert. Dieser Ionisationsmethode schließen sich wie bei anderen Massenspektrometern auch ein Analysator und ein Detektor an. Der Aufbau eines ICP-Massenspektrometers ist in der nachfolgenden Abbildung 6 dargestellt. Die Probenmengen für die ICP-MS sind sehr gering. Dies kann Vor-, sowie Nachteile haben. Zum einen bleibt das Objekt, dem die Probe entnommen wird möglichst intakt, doch zum anderen kann sich eine mögliche Inhomogenität im Material stark auf die jeweilige Messung auswirken.

Abbildung 6: Aufbau einer ICP-MS-Apparatur. Zu erkennen sind die einzelnen Bereiche Ionenquelle, Analysator und Detektor sind zu erkennen^[16].

1.1.8. Informationstiefe von ICP-MS, XRF und PIXE

Die Eindringtiefe der Strahlung hängt bei Protoneninduzierter Röntgenemission und bei der Röntgenfluoreszenz von verschiedenen Faktoren ab. Die Energie der Strahlung und die Zusammensetzung der Probe entscheiden die Eindringtiefe am stärksten. Die Eindringtiefe in die vorliegenden Münzen ist von Röntgenstrahlung mit einer Energie von 50 keV ist etwa genauso groß, wie die Eindringtiefe eines 12 MeV Protonenstrahls. Die Eindringtiefe für Röntgenstrahlung kann mithilfe des Massendämpfungskoeffizienten berechnet werden. Für reines Kupfer liegt die Eindringtiefe bei 427 µm und für reines Silber liegt die Eindringtiefe bei 100 µm, bei einer Energie des Röntgenstrahls von 50 keV. Das bedeutet bei einer Legierung dieser beiden Elemente sollte die Eindringtiefe des Röntgenstrahls zwischen diesen beiden Werten liegen. Um die Eindringtiefe eines Protonenstrahls zu bestimmen wurde das Simulationsprogram SRIM genutzt. Mithilfe von SRIM^[17] können Eindringtiefen bei verschiedenen Probenzusammensetzungen berechnet werden. Durch dieses Simulationsprogramm wurde eine Schicht bestehend aus verschiedenen Elementen modelliert. Für den Protonenstrahl mit der Energie 12 MeV liegt die maximale Eindringtiefe im Bereich von wenigen 100 µm. Die Eindringtiefe des Protonenstrahls ist, trotz deutlich höherer Energie verglichen mit dem Röntgenstrahl, etwa gleich groß, was darauf zurückzuführen ist, dass die Photonen des Röntgenstrahls keine geladenen Teilchen sind und alle Zusammenstöße zwischen Photonen und Elektronen der Atome rein statistisch stattfinden. Die Protonen hingegen sind geladene Teilchen, die nicht nur statistisch auf die Elektronen der Atome treffen. Die Protonen werden aufgrund Ihrer Ladung von den Atomkernen abgestoßen und von Elektronen angezogen. Durch diese Effekte verändert sich die Richtung der Protonen, weshalb diese sehr schnell an Energie verlieren. ICP-MS ist im Vergleich zu PIXE und XRF keine Analysemethode, die sich Röntgenfluoreszenz zunutze macht, sondern Atome und deren Verhältnis untereinander zählt. Für die ICP-MS müssen, anders als bei PIXE und XRF, Proben entnommen werden. Die drei Analysemethoden können so genutzt werden, dass XRF und PIXE Aufschluss über eine ähnlich tiefe Materialschicht geben und ICP-MS Informationen über das innere der Münze liefert. Schwanken die Messwerte zwischen den Analysemethoden, kann darauf geschlossen werden, dass die Metalle keine gut durchmischte Legierung miteinander gebildet haben, oder dass die

Löslichkeit der einen Hauptkomponente in der anderen nicht vollständig war. Damit die XRF- und PIXE-Daten richtig eingeordnet werden können muss jedoch eine Absorptionskorrektur durchgeführt werden. Ohne Absorptionskorrektur können lediglich Trends miteinander verglichen werden.

1.1.9. XMI-MSIM Simulation von XRF-Spektren

Bei XMI-MSIM handelt es sich um ein *Monte-Carlo*-Simulationsprogramm, welches entwickelt wurde, um Röntgenfluoreszenzspektren berechnen. Das zu Simulationsprogramm berücksichtigt für die Berechnung von Röntgenfluoreszenzspektren Faktoren wie Probenzusammensetzung, die Messgeometrie, sowie die Probengeometrie, die Art der Röntgenguelle, die Wechselwirkungen der Strahlung innerhalb der Probe, und die Art des Detektors. Durch die Monte-Carlo-Simulation werden die Interaktionen jedes einzelnen Photons berechnet. Dies wird vom Simulationsprogramm in einzelnen Stufen gemacht. Es gibt drei relevante Wechselwirkungen, die sich auf das Photon auswirken können. Diese sind der photoelektrische Effekt, die Rayleigh-Streuung und der Compton-Effekt. Der photoelektrische Effekt beschreibt den Umstand, dass Hüllenelektronen durch Photonen einen Energieübertrag erhalten können, der dazu führt, dass diese Elektronen den Atomverband verlassen können. Als Rayleigh-Streuung wird die elastische Streuung von Photonen, also elektromagnetischer Strahlung, an kleinsten Teilchen bezeichnet. Höherenergetische elektromagnetische Strahlung wird durch diesen Effekt stärker gestreut als niederenergetische Strahlung. Der Compton-Effekt beschreibt das Phänomen der Photonenstreuung an Elektronen. Ein Photon überträgt durch den Zusammenstoß mit einem Elektron einen Teil seiner Energie auf das Elektron. Durch diesen Zusammenstoß verringern sich der Energiegehalt und die Nach jeder einzelnen Interaktion berechnet das Richtung des Photons. Simulationsprogramm, wie sich der Zustand des Photons ändert bezüglich Energie und Richtung. Das Simulationsprogramm erzeugt schließlich ein für die Probe und Geometrie der Messapparatur erwartetes Röntgenfluoreszenzspektrum.

2.1. Messdurchführung XRF

Abbildung 7: Messpunkte auf einer Münzseite. Beide Seiten wurden nach dem gleichen Prinzip vermessen.

Augustus	Nero
AL_0061	AL_0187
AL_0062	AL_0188
AL_0063	AL_0189
AL_0064	ALSK_0169
AL_0065	ALSK_0170
AL_0075	ALSK_0171
AL_0076	ALSK_0171NO1
AL_0081	ALSK_0171NO1_Bruchstelle
AL_0082	
AL_0086	
AL_0087	
AL_0088	
ALSK_0047	
ALSK_0048	
ALSK_0058	
ALSK_0059	
ALSK_0060	

Tabelle 2: Münzen kategorisiert nach Nero und Augustus. 17 Münzen sind der Zeit von Augustus zuzuordnen, 7 Münzen der Zeit von Nero.

Es wurden 24 alexandrinische Tetradrachmen (auch Billon-Münzen genannt) ausgesucht, um diese mit einem Röntgenfluoreszenzspektrometer zu untersuchen. 17 der 24 Tetradrachmen stammen aus der Zeit von Kaiser Augustus (27 v. Chr--14 n. Chr) und 7 der Münzen stammen aus der Zeit von Kaiser Nero (54-68 n. Chr). Die 24 ausgesuchten Münzen wurden mit dem Röntgenfluoreszenzspektrometer ELIO der Firma XGLab^[18] vermessen. Das Gerät besteht aus einer Röntgenröhre mit Rhodiumanode und einem Siliziumdriftdetektor mit 4096 Kanälen. Der Röntgenstrahl wird senkrecht auf die Probe gestrahlt und der Detektor befindet sich in einem Winkel von 63.5° zur Probe. Um diesen Messaufbau zu gewährleisten, strahlt das Gerät zwei Laserstrahlen auf die Probe. Die für das Messgerät vorgeschriebene Messgeometrie wird erfüllt, wenn beide Laserpunkte auf der Probe zur Deckung gebracht werden. Mit der Programmsoftware konnten die Parameter eingestellt werden. Die Messzeit einer einzelnen Messung betrug 120 s. Die Beschleunigungsspannung der Röntgenröhre wurde auf 50 kV eingestellt, um die Cu-K-Linien stark genug anzuregen. Der Röhrenstrom wurde auf 30 µA eingestellt, damit die Totzeit des Detektors möglichst nicht über 10% lag. Es wurden 20 Messungen pro Münze durchgeführt, davon je 10 pro Münzseite. Die Münzen wurden an acht verschiedenen Stellen, mit gleichmäßigem Abstand zueinander, im Abstand von etwa 1mm zum Münzrand und zweimal im Zentrum der Münzseite gemessen. In Abbildung 7 ist verdeutlicht welche Punkte auf den Münzen gewählt wurden. Da eine der Tetradrachmen aus der Nero-Zeit in zwei Teile zerbrochen war, konnten weitere Messungen an den Bruchkanten dieser Münzfragmente durchgeführt werden. Die Bruchkanten wurden an fünf verschiedenen Stellen jeweils zwei Mal gemessen. Jede Messung wurde mit der entsprechenden Kennung der Münze versehen, welche Seite der Münze gemessen wurde und letztlich welche Messung vorliegt. Dadurch entsteht eine Benennung wie beispielsweise AL_0062_R_05. Al_0062 ist die Benennung der Münze, "O", oder "R" stehen für Obverse (Vorderseite) bzw. Reverse (Rückseite) und die Kennung _05 für die jeweilige Messung. Die Messungen der Bruchkanten wurden ähnlich benannt. Da es dort jedoch kein Obverse, oder Reverse gab wurde die Einteilung in kleines Bruchstück (kB) und großes Bruchstück (gB) vorgenommen. Die Messungen wurden anschließend von der ELIO-Software des Geräts ausgewertet. Dem Programm wurde vorgegeben, dass es explizit nach den beiden Hauptkomponenten Silber und Kupfer und nach fünf Spurenelementen Zink, Zinn, Blei, Eisen und Gold auswertet, da diese in den

Spektren erkannt wurden. Das Programm interpretiert daraufhin das gemessene Spektrum und berechnet die Massenprozente der einzelnen Komponenten inklusive des Fehlerbereichs der Berechnung. Da das Programm keine Selbstabsorptionskorrektur durchführt, kann davon ausgegangen werden, dass die sind. Die erhaltenen Ergebnisdaten fehlerbelastet Daten der Röntgenfluoreszenzanalyse wurden anschließend statistisch mithilfe von Boxplots und mit Hinblick auf Besonderheiten wie Korrelationen zwischen verschiedenen Metallen ausgewertet.

2.2. Messdurchführung PIXE

Augustus	Nero
ALSK_0047	ALSK_0171
ALSK_0048	ALSK_0171NO1

Tabelle 3: Übersicht über die für PIXE ausgesuchten Münzen. Die Münzen ALSK_0047 und _0048 gehören zeitlich in die Zeit von Augustus die anderen beiden Münzen in die Zeit von Nero.

Von den 24 alexandrinischen Münzen wurden vier für die PIXE-Messung ausgesucht. Bei den vier Münzen handelt es sich um zwei aus der Augustus-Zeit, eine aus der Nero-Zeit und der zerbrochenen Münze, welche ebenfalls der Nero-Zeit zuzuordnen ist. In der folgenden Abbildung 8 ist die Probenleiter mit den Münzen ALSK_0047, ALSK_0048 und einem Gold- und Tantalstandard dargestellt. Die eingezeichneten gelben Linien zeigen die Achse, entlang welcher die Messungen durchgeführt wurden.

Abbildung 8: Probenleiter mit den Münzen ALSK_0047 und ALSK_0048. Unter den beiden Münzen sind ein Gold- und ein Tantalstandard befestigt.

Jeweils zwei der Münzen konnten auf einer Probenleiter befestigt werden. Die Probeleiter wurde anschließend in das Messgehäuse gehängt. Das Messgehäuse wurde evakuiert und die Münzen wurden anschließend mit einem Protonenstrahl der Energie 12 MeV bestrahlt und deren Röntgenemission einem von Siliziumdriftdetektor Schlussendlich wurden über die gemessen. Röntgenemissionsspektren die Verhältnisse zwischen den beiden Hauptkomponenten Kupfer und Silber ermittelt, um diese mit den anderen Analysemethoden vergleichen zu können.

Probe	Entnahmestelle	Einwaage/µg
ICP-MS_01	Mitte gB obverse	1650
ICP-MS_02	Mitte gB reverse	1520
ICP-MS_03	12 Uhr gB obverse	2060
ICP-MS_04	12 Uhr gB reverse	1160
ICP-MS_05	3 Uhr gB Außenkante	1450
ICP-MS_06	8 Uhr kB obverse	1310
ICP-MS_07	11 Uhr kB obverse	1390

2.3. Probenvorbereitung und Durchführung ICP-MS

Tabelle 4: Einwaagen der entnommen Proben für die ICP-MS-Messungen

Für die ICP-MS-Messung wurden sieben Proben von der gebrochenen Münze entnommen. Die Stellen an der die Proben genommen wurden sind in Tabelle 4 ersichtlich, ebenso wie die genauen Einwaagen der Proben. Die jeweilige Einwaage der Probe wurde danach in 2 ml 65% HNO₃ gelöst. Die Proben 02, 03, 05 und 07 lösten sich bei Raumtemperatur in der Säure und wurden daraufhin auf 20 mL mit H₂O aufgefüllt. Die Proben 01, 04 und 06 lösten sich bei Raumtemperatur nicht vollständig, weshalb diese für 12 Stunden auf 80°C in einem Wasserbad erhitzt wurden und weitere 36 Stunden bei Raumtemperatur stehen gelassen wurden. Auch diese Proben wurden auf 20 mL aufgefüllt, sodass die Konzentration der Salpetersäure etwa 1M war. Zur Vermessung der Proben wurden diese erneut verdünnt und in die Ionenquelle eingeführt und nach dem Prinzip, wie unter ICP-MS beschrieben vermessen. Als Analysator fungierte in dieser Apparatur ein Quadrupol.

2.4. Dateneingabe XMI-MSIM

Radionuclides X-ray tube (Ebel model)					
Tube voltage (kV)			50			
Tube current (mA)			100.0			
Tube solid angle (sr)	1e-007		Get from slits			
Electron incidence angle (de	grees)		60			
X-ray take-off angle (degrees	60					
Interval width (keV)			0.10			
Material De	ensity (g/cm³)	Thickr	ness (cm)			
Anode Rh ~ 12.41		0.0002				
Window Be 🗸 1.848		0.0125				
Filter He 🗸 0.000166		0				
Transmission tube						

Abbildung 9: Eingabe Parameter für eine Röntgenröhre mit Rhodiumanode für die Simulationsspektren.

Geomet	Ŋ	
Sample-source distance (cm)		100
Sample orientation vector	x: 0	y: 0 z: 1
Detector window position (cm)	x: 0	y: 0.553803 z: 99.1051
Detector window normal vector	x: 0	y: -0.446197 z: 0.894935
Active detector area (cm ²)		0.3
Collimator height (cm)		0
Collimator diameter (cm)		0
Source-slits distance (cm)		100
Slits size (cm)	x: 0.001	у: 0.001

Abbildung 10: Eingabedaten für einen Röntgenstrahl senkrecht zur Probe und einem Detektorwinkel von 26,5 ° zur Röntgenröhre.

Zunächst wurde unter dem Reiter X-ray-source eine Röntgenröhre erstellt, welche der des XRF-Messgeräts von XGLab möglichst ähnlich sein sollte. Die genauen Parameter sind in Abbildung 9 zu erkennen. Die Beschleunigungsspannung der Röhre konnte wie in der realen Röntgenröhre auf 50 kV eingestellt werde, der Röhrenstrom jedoch nicht auf 30 mA. Der Röhrenstrom musste, da XMI-MSIM die Spektren sonst nicht berechnen konnte auf 100 mA eingestellt werden. Dieser

Unterschied war jedoch nicht relevant, da im Rahmen dieser Arbeit lediglich die Intensitätsverhältnisse der Kupfer- und Silberlinien von Interesse waren, welche sich dadurch nicht ändern. Als Anodenmaterial wurde Rhodium ausgewählt und als Material für das Fenster der Röntgenröhre konnte Beryllium ausgewählt werden. Die Anzahl der Photonen pro Intervall wurde auf 10000 eingestellt und die Anzahl der Photonen pro diskreter Linie auf 100000. Des Weiteren wurde die Einstellung so gewählt, dass jedes Photon vier Interaktionen auf seiner Flugbahn erfährt. Die Parameter zum Aufbau der Messapparatur wurden so gewählt, dass der Röntgenstrahl senkrecht auf die Probe trifft und der Detektor in einem Winkel von 26,5° zur Röntgenröhre steht. Die dazu notwendigen Eingabewerte sind in Abbildung 10 zu finden. Als Detektor wurde ein Siliziumdriftdetektor mit 4096 Kanälen ausgewählt. Für die Probe deren Spektrum simuliert werden sollte, wurde bei gleichbleibender Zusammensetzung, immer die von ALSK_0171 ausgewählt, da deren Kupfer- und Silbergehalt bei der XRF-Messung der Münze recht ähnlich zueinander waren. In der ersten Simulationsreihe wurden die wt% von Kupfer und Silber zueinander so variiert. das eine Reihe erhalten wurde mit Zusammensetzungen von 5 wt% Ag und 95 wt% Cu bis hin zu 95 wt% Ag und 5 wt% Cu. Bei einer weiteren Simulationsreihe wurde der Einfallswinkel des Röntgenstrahls auf die Probe verändert. Der senkrechte Strahl wurde dabei al 0° betrachtet. Es wurden Spektren im 10 ° Abständen von -60 ° - 45 ° simuliert. Des Weiteren wurden mehrere Simulationen zu verschiedenen Schichtdicken durchgeführt

3. Auswertung und Ergebnisse

3.1. Auswertung XRF

3.1.1 Statistische Auswertung XRF

Die Elementzusammensetzungen der Münzen wurden mithilfe von Röntgenfluoreszenzanalysen ermittelt. Die Zusammensetzungen der Münzen werden tabellarisch aufgelistet. Wie in Tabelle 5 und 6 zu erkennen handelt es sich bei den Prozentangaben um Angaben in Gewichtsprozent. Untersucht wurden die einzelnen Münzen auf die Gehalte von Kupfer, Silber, Zink, Zinn, Blei, Gold und Eisen.

Abbildung 11: XRF-Spektrum von ALSK_0047. Aufgetragen ist logarithmisch die Intensität über die Energie in keV. Die einzelnen Peaks sind mit der zugehörigen charakteristischen Strahlung beschriftet.

Probe	Cu / wt%		Ag / wt%	
AL_0061	63,7	+3,52	34,1	+0,00100
_	·	-0,00100		-3,87
AL_0062	47,0	+3,30	51,3	+4,01
		-3,78		-3,26
AL_0063	30,5	+10,3	67,4	+5,49
		-5,80		-10,1
AL_0064	68,6	+2,47	29,4	+0,62
		-0,43		-2,17
AL_0065	42,7	+15,8	54,6	+11,9
		-11,5		-15,4
AL_0075	64,9	+2,37	33,3	+2,47
AL 0070	00.0	-2,66	00.0	-2,12
AL_0076	68,3	+3,02	29,8	+0,72
AL 0081	20.4	-1,22	69.2	-3,09
AL_0001	30,1	+0,00	00,3	+7,13
AL 0082	67.5	-7,17	20.7	-0,40
AL_0082	07,5	-1 70	30,7	+2,20 -6.23
AL 0086	58 4	+4.48	30.7	+4 11
AE_0000	50,4	-4.33	55,7	-4.08
AL 0087	53.0	+13.7	42.0	+5 25
	00,0	-6.11	12,0	-12.31
AL 0088	36.7	+6.34	60.6	+5.49
	,	-5,87	,-	-6,22
AL_0187	77,2	+2,11	21,0	+1,41
		-1,33		-1,78
AL_0188	73,6	+0,93	24,5	+0,72
		-1,08		-1,21
AL_0189	56,1	+3,94	41,8	+3,64
		-4,02		-3,72
ALSK_0047	2,88	+0,60	95,4	+0,43
AL OK 0040	00.4	-0,33	00.0	-0,55
ALSK_0048	29,1	+7,52	69,3	+6,85
	46 E	-7,31	E1 C	-7,55
AL3K_0038	40,0	+0,41	51,0	+4,95
ALSK 0059	50.8	+3.81	38.2	±2.81
ALON_0000	55,0	-2.71	50,2	-3.18
ALSK 0060	36.4	+6.99	62.0	+6.35
	, -	-6,21	,-	-6,93
ALSK 0169	77,5	+1,28	20,6	+1,23
_	-	-1,54	-	-1,18
ALSK_0170	76,7	+1,94	20,7	+1,58
		-1,66		-1,28
ALSK_0171	46,1	+5,15	52,1	+5,43
		-5,60		-5,50
ALSK_0171NO1_0523	53,4	+5,23	45,4	+3,10
		-2,77		-5,99
ALSK_0171NO1_0523_Br	18,6	+2,23	77,3	+8,27
		-6,25		-2,42

Tabelle 5: Durchschnittliche Werte für Kupfer und Silber der mit XRF vermessenen Münzen. Die Werte sind in wt% angegeben. Der positive Fehler wird durch das dritte Quartil und der negative Fehler durch das erste Quartil dargestellt.

Probe	Zn/		Sn /		Pb/		Au /		Fe /	
	wt%		wt%		wt%		wt%		wt%	
AL_0061	0,880	+0,00100 -0,210	0,420	+0,0600 -0,200	0,580	+0,0600 -0,180	0,260	+0,0400 -0,0300	0,130	+0,0300 -0,0200
AL_0062	0,480	+0,0200 -0.0800	0,620	+0,0010 -0.230	0,200	+0,0200 -0.0200	0,280	+0,0600 -0.0300	0,100	+0,0100 -0.0200
AL_0063	0,280	+0,0400	0,730	+0,150	0,640	+0,0700	0,380	+0,0300	0,100	+0,0200
AL_0064	0,860	+0,0600	0,490	+0,230	0,390	+0,0400	0,180	+0,0300	0,150	+0,00100
AL_0065	1,32	+0,00100	0,410	+0,0700	0,330	+0,0900	0,420	+0,1000	0,180	+0,00100
AL_0075	0,770	+0,100	0,390	+0,140	0,320	+0,0300	0,230	+0,0500	0,150	+0,0200
AL_0076	0,780	+0,110	0,340	+0,140	0,450	+0,0500	0,220	+0,0300	0,120	+0,0200
AL_0081	0,550	-0,190 +0,120	0,410	-0,190 +0,120	0,210	-0,180 +0,0500	0,400	-0,0200 +-0,0900	0,0800	-0,0100 +0,0100
AL 0082	0.940	-0,160	0.270	-0,250	0.210	-0,0500	0.260	-0,0900	0.100	-0,0100
AL_0002	0,040	+0,0300 -0,150	0,370	-0,290	0,210	-0,0200	0,300	-0,0700	0,100	-0,0200
AL_0086	0,850	+0,120 -0,250	0,520	+0,150 -0,190	0,310	+0,0500 -0,0500	0,130	+0,0200 -0,0300	0,120	+0,0100 -0,0300
AL_0087	3,55	+0,810 -1.07	0,320	+0,0800 -0.240	0,270	+0,00100 -0.900	0,450	+0,0900 -0.100	0,410	+0,00100 -0.300
AL_0088	0,800	+0,0200	0,580	+0,240	0,990	+0,0900	0,270	+0,0900	0,0800	+0,0100
AL_0187	0,860	+0,140	0,310	+0,120	0,230	+0,0600	0,130	+0,0300	0,280	+0,00100
AL_0188	0,740	+0,160	0,360	+0,250	0,320	+0,0500	0,240	+0,0300	0,180	+0,00100
AL_0189	0,510	+0,130	0,670	+0,300	0,480	+0,1100	0,290	+0,0200	0,170	+0,0200
ALSK 0047	0.0300	-0,130 +0.0010	0.620	-0,460 +0.160	0.630	-0,160 +0.1300	0.410	-0,0300 +0.0400	0.0600	-0,0300 +0.0100
	0.400	-0,0100	0.500	-0,400	0,000	-0,110	0.000	-0,0200	0.0000	-0,0100
ALSK_0048	0,190	+0,0400 -0,0400	0,530	+0,200 -0,240	0,490	+0,100 -0,130	0,280	+0,0300 -0,0200	0,0600	+0,0100 -0,0100
ALSK_0058	0,490	+0,0010 -0,240	0,600	+0,210 -0,360	0,350	+0,0500 -0,0800	0,320	+0,0600 -0,0700	0,110	+0,0200 -0,0100
ALSK_0059	0,660	+0,0700	0,640	+0,240	0,210	+0,0300	0,360	+0,0400	0,100	+0,0100
ALSK_0060	0,280	+0,0100	0,520	+0,270	0,400	+0,0900	0,270	+0,0500	0,150	+0,0100
ALSK_0169	0,960	+0,310	0,430	+0,0600	0,210	+0,0300	0,130	+0,0500	0,1200	+0,0200
ALSK 0170	0 760	-0,320 +0.180	0 440	-0,160 +0.190	0 320	-0,0200	0.100	-0,0400	0 9400	-0,0200
	0,700	-0,190	0,110	-0,240	0,020	-0,0300	0,100	-0,0100	0,0400	-0,6800
ALSK_0171	0,470	+0,180 -0,220	0,660	+0,220 -0,220	0,160	+0,0200 -0,0300	0,480	+0,0400 -0,0500	0,0900	+0,0100 -0,0300
ALSK_0171 NO1 0523	0,390	+0,0800	0,340	+0,280	0,140	+0,0100	0,280	+0,00100	0,0600	+0,0100 -0.0100
ALSK_0171	0,170	+0,00100	0,710	+0,320	0,220	+0,0400	0,580	+0,0900	2,46	+0,00100
NO1_0523_Br		-0,600		-0,210		-0,0400		-0,110		-2,42

Tabelle 6: Durchschnittliche Werte für Zink, Zinn, Blei Gold und Eisen der XRF-Messungen. Die Werte sind in wt% angegeben. Der positive Fehler wird durch das dritte Quartil und der negative Fehler durch das erste Quartil dargestellt.

Deutlich zu erkennen ist, dass die Münzen in Ihrer Zusammensetzung große Schwankungen aufweisen. Der Silbergehalt schwankt von 20,6 (ALSK_0169) bis 95,4 (ALSK_0047) Gewichtsprozent. Der Kupfergehalt befindet sich innerhalb dieses Münzsatzes zwischen 2,88 (ALSK_0047) und 77,5 (ALSK_0169) Gewichtsprozent. Sehr interessant ist, dass die gebrochene Münze (ALSK_0171NO1_0523), welche in

der Numismatik als demineralisiert eingestuft wird, an der Oberfläche eine zu ALSK_0171 sehr ähnliche Zusammensetzung aufweist. Wird die Bruchstelle dieser Münze bertachtet, ist zu erkennen, dass die Zusammensetzung im inneren der Münze jedoch deutlich von der Oberflächenzusammensetzung abweicht. Der Silbergehalt ist dort um 31,9 Prozentpunkte höher und der Kupfergehalt um 34,8 Prozentpunkte geringer, als an der Münzoberfläche. Der Eisengehalt ist an der Bruchstelle ebenfalls auffallend hoch mit 2,46 wt%. Dieser Einfluss könnte jedoch durch die Messweise zustande kommen, da die Münze zur Messung der Bruchstelle mit einer Metallzange fixiert wurde. Es ist nicht auszuschließen, dass der Röntgenstrahl charakteristische Röntgenstrahlung in der Zange ausgelöst hat. Der Unterschied in der Oberflächenzusammensetzung und der Zusammensetzung an der Bruchstelle könnte auf eine schlechte Löslichkeit beziehungsweise Durchmischung der Hauptkomponenten Silber und Kupfer hinweisen. Die Stabilität eine Legierung wird durch eine schlechte Durchmischung der Elemente stark beeinträchtigt, was die Ursache für den Bruch der Münze darstellen kann. Zusammenfassend kann festgehalten werden, dass die Unsicherheiten der einzelnen Werte gemittelt über die genannten 20 Messpunkte (siehe Abschnitt 3.1.2.) erheblich sind. Für diese Unsicherheiten können Faktoren wie mikroskopische Inhomogenitäten, oder auch geometrische Effekte verantwortlich sein. Da die Größe des Röntgenflecks etwa bei einem Durchmesser von 1 mm liegt sind die mikroskopischen Inhomogenitäten als starker Einflussfaktor eher unwahrscheinlich. Der Einfluss geometrische Faktoren wird im Abschnitt 3.2.2. untersucht.
3.1.2. Vergleich der Mittelwerte der Münzen

Im Folgenden werden die Mittelwerte der Münzen mit Fehler aufgetragen. Als positiver Fehler wurde der Wert des dritten Quartils und als negativer der des ersten Quartils genommen. In Schwarz sind die Mittelwerte der Münzen aus der Augustus-Zeit dargestellt, in Rot die der Nero-Zeit.

Abbildung 12: Auftragung der Mittelwerte von Kupfer (links) und Silber (rechts) in wt%. Angegeben sind des Weiteren der positive und der negative Fehler.

Auffällig an diesen beiden Auftragungen ist, dass einige Werte sehr große Fehlerbereiche haben, wie die Münzen bei 3, 5, 8 und 11. Diese großen Fehlerbreiche sind bei Kupfer sowie bei Silber zu sehen. Bei diesen Münzen waren die Schwankungen der einzelnen Messergebnisse sehr groß, weshalb diese Werte einen großen Fehler aufweisen. Die Fehlerbalken sind bei den Nero-Münzen deutlich kleiner, was für eine bessere Homogenität dieser Münzen in der Verteilung von Kupfer und Silber sprechen könnte. Von 17 Augustus-Münzen haben nur neun einen mit den Nero-Münzen vergleichbaren Fehlerbereich, acht Münzen haben einen deutlich größeren Fehlerbereich. Des Weiteren fällt auf, dass die Münzen mit dem geringsten Silbergehalten aus der Nero-Zeit kommen. Dies ist im Einklang mit der Beobachtung, dass die Münzmaterialien im Laufe der Zeit mit kostengünstigerem Material gestreckt wurden.

Abbildung 13: Auftragung der Mittelwerte von Zink (links) und Zinn (rechts) in wt%. Angegeben sind des Weiteren der positive und der negative Fehler.

Für Zink zeigen fast alle Münzen einen vergleichbaren und kleinen Fehlerbereich. Die Nero-Münzen und die Augustus-Münzen lassen sich hier durch den Fehlerbereich nicht unterscheiden. Jedoch gibt es eine Augustus-Münze mit einem hohen Zinkgehalt. Diese Münze weist Zink betreffend einen sehr großen Fehler auf. Das bedeutet, der Mittelwert kann durch eine oder mehrere Messungen mit einem sehr hohen Zinkgehalt deutlich nach oben verschoben worden sein, weshalb ein großer Fehler resultieren würde. Die Werte Für Zinn weisen alle eine hohe Unsicherheit auf, das bedeutet, dass die Messergebnisse Zinn betreffend sehr großen Schwankungen unterliegen. Zinn K_{α} (25,271 keV) und Silber K_{β} (24,941) liegen sehr nah beieinander, weshalb die Möglichkeit besteht, dass die Programmsoftware bei nicht ausreichender Kalibrierung Silberintensität als die von Zinn interpretiert.

Abbildung 14: Auftragung der Mittelwerte von Blei (links) und Gold (rechts) in wt%. Angegeben sind des Weiteren der positive und der negative Fehler.

Wird die Auftragung der Mittelwerte von Blei betrachtet, fällt auf, dass die Nero-Münzen erneut im Allgemeinen geringere Fehler aufweisen, als die Augustus-Münzen. Tendenziell haben höhere Bleiwerte auch einen größeren Fehlerbereich. Durch den großen Fehlerbereich folgt daraus, dass die Einzelergebnisse eine große Streuung aufweisen. Bei den Goldwerten haben alle Daten mit einigen Ausnahmen recht gleichmäßige und geringe Fehlerbereiche. Fünf Werte der Augustus-Münzen weisen große Fehler auf, sowie ein Wert der Nero-Münzen. Das spricht wie bereits erwähnt für eine große Streuung der Einzelmesswerte um den Mittelwert herum.

Abbildung 15: Auftragung der Mittelwerte von Eisen in wt%. Angegeben sind des Weiteren der positive und der negative Fehler.

Die Mittelwerte von Eisen verhalten sich, bis auf fünf Ausnahmen, sehr gleichmäßig. Von diesen fünf Werten stechen zwei sehr leicht nach oben heraus und weisen einen leicht erhöhten Fehlerbereich auf. Diese beiden Werte sind jeweils aus der Gruppe der Augustus-Münzen und der Nero-Münzen. Der dritte auffallende Wert ist der von der elften Münze und weist einen recht großen negativen Fehler auf. Die beiden letzten auffallenden Werte sind den Nero-Münzen zuzuordnen Sie weisen sehr große Fehlerwerte auf. Die Streuung der Einzelmessungen ist also sehr groß.

Gründe für teilweise große Schwankungen können in der Probengeometrie liegen, da bereits ein schräg einfallender Röntgenstrahl deutliche Intensitätsveränderungen auslösen kann, wie in Abschnitt 3.2.2. diskutiert wird. Des Weiteren kann auch die Oberflächenstruktur der Münzen Einfluss auf die Intensität der charakteristischen Strahlung nehmen, da die Schichtdicke die die Strahlung im Material überwinden muss, dadurch lokal zunehmen kann. Die Inhomogenität der Legierung kann ebenfalls einen großen Einfluss auf die gemessenen Werte haben.

3.1.3. Korrelationen zwischen verschiedenen Elementen

Es bestand die Vermutung, dass der Gehalt eines Elements mit dem eines anderen korrelieren könnte, insbesondere bei den Spurenelementen. Um diese These zu überprüfen wurde Pearsons R ermittelt. Liegt dieser Wert bei 1 so besteht eine vollständige positive Korrelation zwischen zwei Variablen. Liegt dieser Wert bei -1 so besteht eine vollständig negative Korrelation. Ein Wert von 0 bedeutet, dass es zwischen den beiden Variablen keinerlei Korrelation gibt. Die Werte können aber auch zwischen -1 und 0 beziehungsweise zwischen 0 und 1 liegen in diesem Fall besteht keine vollständige positive, oder negative Korrelation zwischen zwei Variablen.

Pearsons R	Alle Münzen	Nero	Augustus
Rxy/Cu(Ag)	-0,999	-0,999	-0,998
Rxy/Cu(Au)	-0,546	-0,817	-0,420
Rxy/Ag(Au)	0,534	0,816	0,403
Rxy/Ag(Au)- Mittelwerte	0,671	0,955	0,460

Tabelle 7: Pearsons R-Werte für die Korrelation zwischen den Messwerten von Kupfer, Silber und Gold.

Pearsons R wurde für alle paarweisen Kombinationen aller betrachteten Elemente ermittelt. Korrelationen konnten dabei für Kupfer, Silber und Gold gefunden werden. In Tabelle 7 sind die Werte für Pearsons R für die Korrelationskombinationen Kupfer-Silber, Kupfer-Gold und Silber-Gold aufgelistet. Die Werte wurden für alle Messwerte, für den Teil an Münzen aus der Nero-Zeit und für den Teil der Münzen aus der Augustus-Zeit berechnet. Da Kupfer und Silber die beiden Hauptkomponenten der Münzen sind, ist trivialerweise zu erwarten, dass der Wert für Pearsons R zwischen diesen beiden Elementen bei -1 liegt. Die berechneten Werte sind alle sehr nah an -1 mit -0,999 für alle Münzen und für die Münzen der Nero-Zeit, sowie -0,998 für die Münzen der Augustus-Zeit. Andere deutliche Korrelationen liegen nur noch mit den Goldgehalten vor. Dies könnte darauf hindeuten, dass das in den Münzen in Spuren vorhandene Gold im Silber gelöst ist, beziehungsweise im Silber seinen Ursprung hat, sei es aus dem Erz, oder aus wieder eingeschmolzenem Silber. Der R-Wert für alle Münzen für Silber und Gold liegt bei 0,534. Es besteht also eine gewisse Korrelation zwischen den beiden Elementen. Die Korrelation zwischen diesen beiden Metallen Silber und Gold ist bei den Münzen aus der Augustus-Zeit mit einem R-Wert von 0,403 etwas geringer, bei den Münzen aus der Nero-Zeit ist der Wert für R jedoch deutlich größer mit 0,816. Wird die Korrelation zwischen Gold und Silber mithilfe der Mittelwerte der einzelnen Münzen berechnet, so verändern sich die R-Werte etwas. Der Korrelationswert für alle Münzen steigt auf 0,671, der der Augustus-Münzen auf 0,460 und der der Nero-Münzen sogar auf 0,955. Daraus kann geschlossen werden, dass der Goldgehalt in den Münzen in gewissem Maß vom Silbergehalt abhängt. Dieser Effekt ist bei den späteren Münzen aus der Nero-Zeit deutlich stärker zu finden, als bei den früheren Münzen der Augustus-Zeit. Bei den Nero-Münzen kann bei Betrachtung der durch die Mittelwerte bestimmten R-Werte von einer vollständigen linearen Korrelation sprechen.

Abbildung 16: Auftragung der Goldmesswerte über die Silbermesswerte zur Überprüfung der linearen Korrelation zwischen den beiden Elementen. (Augustus links) (Nero rechts)

Vergleicht man die in Abbildung 16 dargestellten Auftragungen, so lässt sich deutlich erkennen, dass die lineare Korrelation zwischen Silber und Gold in der rechten Auftragung (Nero) größer ist, als in der linken (Augustus). Bei den Nero-Münzen scheint es zwei Untergruppen zu geben. Die Werte konzentrieren sich größtenteils um 0,2 auf der x-Achse oder im Bereich von 0,4-0,5. Die Münzen der Augustus-Zeit teilen sich nicht in Untergruppierungen auf.

Abbildung 17: Auftragung von Ag(Au) in wt% der Mittelwerte für die Münzen zur Zeit von Augustus (links) und Nero (rechts).

In der Abbildung 17 sind nochmals die Mittelwerte der Silbergehalte über die zugehörigen Mittelwerte der Goldgehalte aufgetragen. Klar ersichtlich aus diesen Auftragungen ist, dass die Werte der Münzen aus der Nero-Zeit eine größere Linearität aufweisen, verglichen mit denen aus der Augustus-Zeit. Dies könnte darauf hindeuten, dass erst in der Nero-Zeit eine Beimengung deutlicher Mengen Goldhaltigen Silbers zu den Münzmetallen erfolgte. Aus welchem Grund dies so ist, muss im Rahmen der vorliegenden Arbeit Spekulation bleiben.

3.2. Auswertung Simulationen

3.2.1. Kupfer-Silber-Variations-Simulationen

Die Simulationsreihe Kupfer-Silber-Variations-Simulationen wurde in XMI-MSIM durchgeführt, um zu beobachten inwiefern sich die Intensitäten der Elemente Kupfer und Silber in verschiedenen Zusammensetzungen ausprägen. Da die simulierten Proben noch 1,86 wt% Spurenelemente aufwiesen, wurden nicht 95 wt% und 5 wt% eingesetzt, sondern 93,2 wt% und 4,91 wt%. Das Verhältnis zwischen Kupfer und Silber verändert sich jedoch in 5%-Schritten.

Cu / wt%	l(Cu)	Ag / wt%	l(Ag)
93,2	95134	4,91	3275
88,3	86182	9,81	6439
83,4	77981	14,7	9503
78,5	70728	19,6	12511
73,6	63926	24,5	15421
68,7	57644	29,4	18282
63,8	51850	34,3	21054
58,9	46385	39,3	23785
54,0	41323	44,2	26453
49,0	36513	49,0	29052
44,2	32034	54,0	31665
39,3	27710	58,9	34130
34,3	23676	63,8	36559
29,4	19837	68,7	38983
24,5	16136	73,6	41418
19,6	12622	78,5	43759
14,7	9284	83,4	46004
9,81	6067	88,3	48298
4,91	2971	93,2	50507

Tabelle 8: Intensitäten von Kupfer und Silber der Simulationsreihe Kupfer-Silber-Variation mit zugehörigen Angaben in wt%.

Abbildung 18: Auftragung der Intensitäten von Kupfer du Silber in Abhängigkeit von Cu / wt%.

Aus der obigen Abbildung 18 ist gut ersichtlich, dass die Intensitäten von Kupfer und Silber nicht linear zu- beziehungsweise abnehmen. Bei Zunahme des Kupferanteils steigt die Intensität überproportional an. Der Anstieg der Intensität vergrößert sich mit jedem Wert. Im Fall von Silber tritt genau das Gegenteil ein. Je größer der Silberanteil, desto weniger steigt die Intensität. Um diesen Einfluss zu korrigieren wurden zunächst für jede einzelne Messung die Intensität von 1 wt% Cu und 1 wt% Ag berechnet. Dazu wurden die jeweiligen Intensitäten durch den Anteil in wt% geteilt. Anschließend wurden diese Werte jeweils durch den Wert von 5 wt% geteilt, wodurch festgestellt werden konnte, welche Faktor in den einzelnen Intensitäten steckt.

Cu / wt%	I(Cu)/ Cu%	(I(Cu)/Cu%)/(I(Cu)/Cu-5%)	Ag / wt%	I(Ag)/ Ag%	(I(Ag)/Ag%)/(I(Ag)/Ag-5%)
93,2	1020	1,69	4,9	667	1,00
88,3	976	1,61	9,8	656	0,98
83,4	935	1,54	14,7	646	0,97
78,5	901	1,49	19,6	637	0,96
73,6	869	1,43	24,5	629	0,94
68,7	839	1,39	29,4	621	0,93
63,8	813	1,34	34,3	613	0,92
58,9	788	1,30	39,3	606	0,91
54,0	766	1,26	44,2	599	0,90
49,1	744	1,23	49,1	592	0,89
44,2	725	1,20	54,0	587	0,88
39,3	706	1,17	58,9	580	0,87
34,3	689	1,14	63,8	573	0,86
29,4	674	1,11	68,7	567	0,85
24,5	658	1,09	73,6	563	0,84
19,6	643	1,06	78,5	557	0,84
14,7	631	1,04	83,4	551	0,83
9,81	618	1,02	88,3	547	0,82
4,91	605	1,00	93,2	542	0,81

Tabelle 9: Tabelle mit den berechneten Werten des Einflussfaktors der Intensitäten von Kupfer und Silber.

Mithilfe dieser Einflussfaktoren kann nun eine korrigierte Intensität berechnet werden. Die ursprünglichen Intensitäten von Kupfer I(Cu) und von Silber I(Ag) wurden jeweils mit dem Kehrwert des Einflussfaktors multipliziert, wodurch korrigierte Intensitäten erhalten werden konnten. Mit diesen korrigierten Intensitäten wurde ebenfalls das Verhältnis zwischen Kupfer und Silber bestimmt.

Cu / wt%	l(Cu)	Ag / wt%	l(Ag)	[I(Cu) / I(Ag)] _{korr}
93,2	56451	4,9	3275	17,2
88,3	53480	9,8	6550	8,16
83,4	50509	14,7	9825	5,14
78,5	47537	19,6	13100	3,63
73,6	44566	24,5	16375	2,72
68,7	41595	29,4	19650	2,12
63,8	38624	34,3	22925	1,68
58,9	35653	39,3	26200	1,36
54,0	32682	44,2	29475	1,11
49,1	29711	49,1	32751	0,907
44,2	26740	54,0	36026	0,742
39,3	23769	58,9	39301	0,605
34,3	20798	63,8	42576	0,488
29,4	17827	68,7	45851	0,389
24,5	14855	73,6	49126	0,302
19,6	11884	78,5	52401	0,227
14,7	8913	83,4	55676	0,160
9,81	5942	88,3	58951	0,101
4,91	2971	93,2	62226	0,0478

Tabelle 10: Korrigierte Intensitäten von Kupfer und Silber und korrigiertes Verhältnis von Kupfer und Silber.

Abbildung 19: Auftragung des korrigierten Intensitätsverhältnisses über das normale Intensitätsverhältnis von Kupfer und Silber.

Nun konnte, wie in Abbildung 19 ersichtlich, das Verhältnis der korrigierten Intensitäten über das Verhältnis der ursprünglichen Intensitäten aufgetragen werden. Diese Datenpunkte konnten durch eine Ursprungsgerade angepasst werden. Die Steigung dieser Gerade stellt den Korrekturfaktor da. Dieser Lautet $F_k = 0,602$.

Durch diesen Korrekturfaktor können nun in einem Schritt die Verhältnisse von Kupfer und Silber zueinander korrigiert werden. Erhält man Beispielsweise ein Verhältnis von 5 so wird daraus $5 \cdot 0,602 = 3,01$. 3,01 bedeutet, dass sich in der Probe im Vergleich zu Silber die dreifache Menge an Kupfer finden lässt. Bei einem Verhältnis von 3,01 besteht die Probe also aus etwa aus 75 wt% Cu und 25 wt% Ag. Für ein ursprüngliches Verhältnis von 1,67 wird folgender Wert erhalten $1,67 \cdot 0,602 = 1$. Ein Verhältnis von 1 bedeutet gleiche Anteile für Kupfer und Silber, also 50 wt% Cu und Ag.

In der Bachelorarbeit von Sven Lemke wurde ein ähnlicher Korrekturfaktor experimentell bestimmt^[19]. Der dort ermittelte Korrekturfaktor kann zur Korrektur der Blei- und Kupfergehalte in Bleibronzen verwendet werden. Der hier ermittelte

Korrekturfaktor kann unmittelbar angewandt werden und beeinflusst alle Kupfer- und Silberintensitäten gleichermaßen. Dies bedeutet, dass die großen Schwankungen bei XRF-Messungen nicht durch diesen Korrekturfaktor beseitigt werden. Diese Schwankungen müssen anderen Einflüssen unterliegen, wie der Probendicke, oder der Geometrie. In der vorliegenden Arbeit konnte nun gezeigt werden, dass die Ermittlung solcher Korrekturfaktoren auch rein theoretisch mit der Anwendung von XMI-MSIM möglich ist. Die experimentelle Verifizierung konnte aus zeitlichen Gründen im Rahmen dieser Arbeit nicht durchgeführt werden.

3.2.2. Winkel-Variations-Simulationen

Zusätzlich zur Zusammensetzung sind weitere Faktoren für Röntgenfluoreszenzmessungen wichtig, insbesondere kann die Winkelabhängigkeit einer Messung eine Rolle spielen. Wenngleich die Messgeometrie durch den Aufbau des verwendeten XRF-Systems eindeutig festgelegt ist, können Ein- und Ausfallswinkel durch die Oberflächengeometrie des Messobjekts beeinflusst werden. Münzen sind hiervon aufgrund ihrer Prägung im besonderen Maße betroffen. Durch die Münzprägung resultieren unterschiedliche Geometrien im mmund sub-mm-Bereich, also genau im Bereich des verwendeten Strahlflecks. Die Größe dieser Winkelabhängigkeit und Ihr Einfluss werden mithilfe der folgenden Tabellen und Abbildungen erläutert.

Einfallswinkel Röntgenstrahl	l(Cu)	l(Ag)	l(Cu) / l(Ag)
-60°	52001	42424	1,23
-50°	47334	39666	1,19
-45°	45530	38542	1,18
-40°	43940	37485	1,17
-30°	41065	35657	1,15
-20°	38603	34014	1,13
-10°	36162	32372	1,12
0°	33773	30657	1,10
10°	31137	28747	1,08
20°	28127	26448	1,06
30°	24355	23443	1,04
40°	19154	18910	1,01
45°	15697	15586	1,01

Tabelle 11: Intensitäten von Kupfer, Silber und das Intensitätsverhältnis I(Cu) / I(Ag).

Abbildung 20: Auftragung der Intensitäten I(Cu) und I(Ag) über den Einfallswinkel des Röntgenstrahls. Die genauen Daten sind Tabelle 11 zu entnehmen.

Wie in der obigen Abbildung 20 zu erkennen nehmen die Intensitäten der Elemente Kupfer und Silber von -60 ° - 45 ° deutlich ab. Interessant ist vor allem die Tatsache, dass die Intensitäten von Kupfer und Silber unterschiedlich abnehmen. Aus diesem Grund wird in der folgenden Grafik das Verhältnis von Kupfer und Silber über den Winkel aufgetragen werden.

Abbildung 21: Auftragung des Verhältnisses I(Cu) / I(Ag) über den Einfallswinkel der Röntgenstrahlung.

Mit zunehmendem Einfallswinkel sinkt das Intensitätsverhältnis von Kupfer und Silber, Daraus folgt, dass die Strahlung von Kupfer stärker von diesem Winkel abhängig ist, als die von Silber. Der Detektor wurde immer im gleichen Winkel zur Röntgenröhre gehalten, was bedeutet, dass auch dessen Position sich von Messung zu Messung verändert. Der Detektorwinkel ist der Winkel der Röntgenröhre + 26,5 °. Durch den stark angewinkelten Röntgenstrahl bei -60 ° werden besonders die oberen Schichten einer Probe angeregt. Die dadurch resultierende dünne Probenschicht kann nur wenig der charakteristischen Röntgenstrahlung abschirmen, weshalb auch besonders viel Strahlung des Kupfers in den Detektor gelangt. Der Detektor befindet sich dabei in einer guten Position, um diese Strahlung zu detektieren. Das andere Extrem bei 45 ° ein Verhältnis von Kupfer und Silber nahe 1. Die Intensität von Kupfer wird also, verglichen mit den anderen Werten, gedämpft. Die Begründung dafür liegt vermutlich darin, dass die Röntgenröhre zwar ebenfalls durch den starken Einfallswinkel eher nur obere Schichten der Probe anregt, jedoch ist der Detektor nun mit einem derart starken Winkel zur Probenoberfläche geneigt, dass die Photonen,

welche vom Detektor gemessen werden können eine weite Strecke durch die Probe zurücklegen müssen, wodurch viele Photonen abgeschirmt werden. Die betrifft die Strahlung des Elements Kupfer deutlich stärker, als die Strahlung des Elements Silber.

Insgesamt kann festgehalten werden, dass durch die Geometrischen Effekte eine Abweichung der relativen Intensitäten der Kupfer- und Silberlinien von bis zu 20 % auftreten kann. Daraus folgt, es sehr plausibel ist, dass die starken beobachteten Schwankungen der mit XRF ermittelten Elementkonzentrationen vor allem durch Effekte der Oberflächengeometrie zustande kommen.

Es wäre also zu erwarten, dass Methoden die weniger von der Oberflächengeometrie abhängig sind, wie PIXE, oder Methoden die den Probenbulk analysieren, wie ICP-MS, präzisere Ergebnisse liefern. In den folgenden Abschnitten 3.3. und 3.4. wird dies diskutiert.

3.3. ICP-MS-Auswertung

Nachfolgend werden die ICP-MS-Daten ausgewertet und mit vergleichbaren Daten der XRF-Messung verglichen. Der geometrische Einfluss der bei XRF eine Rolle spielt entfällt für ICP-MS vollständig, da hier ein Teil der Münze aufgelöst wird. Die Probenmenge ist sehr gering (< mg), was zu Problemen führen kann. Aufgrund der geringen Probenmenge können gegebenenfalls Proben von wertvollen Artefakten entnommen werde, da keine sichtbare Beschädigung entsteht, jedoch können Inhomogenitäten im Material durch die geringe Probenmenge einen starken Einfluss auf die Messergebnisse haben.

Für die Messreihe mit ICP-MS wurden sieben Proben, ICP-MS _01 bis ICP-MS _07, an der Münze ALSK_0171_NO1 entnommen. In Tabelle 12 sind die Messergebnisse aufgelistet. Vermessen wurden je zwei Standards der sieben Elemente Cu-65, Ag-107, Zn-67, 117-Sn, Pb-207, Au-197 und Fe-57, sowie die Proben ICP-MS_01 bis ICP-MS_03 und ICP-MS_04 bis ICP-MS_07. Aus den gezählten Impulsen eines jeden Elements aus Tabelle 12 konnte im Folgenden die Masse des jeweiligen Elements berechnet werden. Die Konzentrationen der Elemente können aus dem Vergleich mit den Messergebnissen von Reinelementstandards (Tabelle12) berechnet werden.

	65Cu (mp_STD)	rel. Fehler	107Ag (mp_STD)	rel. Fehler /	67Zn (mp_STD)	rel. Fehler	117Sn (mp_STD)	rel. Fehler	207Pb (mp_STD)	rel. Fehler	197Au (mp_STD)	rel. Fehler	57Fe (mp_STD)	rel. Fehler
		1%		%		1%		1%		1%		1%		1%
100ppb	1197288		4862047		24825		1002076		3774013		4256971		755179	
Std														
1ppm	11972882		48620467		248247		10020762		37740128		42569713		7551790	
Std														
ICP-	615974	±0,127	11353442	±0,0297	950	±3,24	350	±5,35	4511	±1,49	13177	±0,871	24444	±0,640
MS_01														
ICP-	2168153	±0,0679	22303252	±0,0212	1540	±2,55	340	±5,42	7422	±1,16	5191	±1,39	22671	±0,664
MS_02														
ICP-	5350090	±0,0432	28177779	±0,0188	830	±3,47	240	±6,45	7112	±1,19	2820	±1,88	23101	±0,658
MS_03														
ICP-	5674405	±0,0420	8218278	±0,0349	1680	±2,44	220	±6,74	9964	±1,00	5981	±1,29	22170	±0,672
MS_05														
ICP-	3923232	±0,0505	7434033	±0,0367	2870	±1,87	240	±6,45	8963	±1,06	11666	±0,926	21659	±0,679
MS_06														
ICP-	836090	±0,109	38350797	±0,0161	4661	±1,46	130	±8,77	9294	±1,04	4101	±1,56	22330	±0,669
MS_07														

Tabelle 12: Auflistung der durch ICP-MS detektierten Atome in den Referenzlösungen.

Die berechneten Massen sind in folgender Tabelle 13 zu finden. Auffällig ist, dass die über ICP-MS bestimmten Massen in den meisten Fällen weit von den Einwaagen entfernt sind. Die erste Messung ergibt eine um 22,57 mg geringere Masse, wohingegen jede weitere Messung das eingewogene Gewicht deutlich überschreitet. Dies könnte generell auf Probleme bei der Probenaufbereitung hinweisen. Im Rahmen der vorliegenden Arbeit konnten diese jedoch nicht geklärt werden.

Probe	Cu/µg	rel.	Ag/µg	rel.	Zn/µg	rel.	Sn/µg	rel.	Pb/µg	rel.	Au/µg	rel.	Fe/µg	rel.	Summe/µg
		Fehler /		Fehler /		Fehler									
		%		%		1%		1%		1%		1%		1%	
ICP-	257,2	±0,127	1167,6	±0,0297	19,1	±3,24	0,2	±5,35	0,6	±1,49	1,5	±0,871	16,2	±0,640	1462,43
MS_01															
ICP-	905,4	±0,0679	2293,6	±0,0212	31,0	±2,55	0,2	±5,42	1,0	±1,16	0,6	±1,39	15,0	±0,664	3246,84
MS_02															
ICP-	2234,3	±0,0432	2897,7	±0,0188	16,7	±3,47	0,1	±6,45	0,9	±1,19	0,3	±1,88	15,3	±0,658	5165,39
MS_03															
ICP-	2369,7	±0,0420	845,1	±0,0349	33,8	±2,44	0,1	±6,74	1,3	±1,00	0,7	±1,29	14,7	±0,672	3265,49
MS_05															
ICP-	1638,4	±0,0505	764,5	±0,0367	57,8	±1,87	0,1	±6,45	1,2	±1,06	1,4	±0,926	14,3	±0,679	2477,71
MS_06															
ICP-	349,2	±0,109	3943,9	±0,0161	93,9	±1,46	0,1	±8,77	1,2	±1,04	0,5	±1,56	14,8	±0,669	4403,49
MS_07															

Tabelle 13: Massenanteile der Elemente bestimmt durch ICP-MS.

Probe	Einwaage/µg	Einwaage - Summe
ICP-MS_01	1650	187,57
ICP-MS_02	1520	-1726,84
ICP-MS_03	2060	-3105,39
ICP-MS_05	1450	-1027,71
ICP-MS_06	1310	-3093,49
ICP-MS_07	1390	1390,00

Tabelle 14 zeigt die Massendifferenz zwischen der Einwaage der Proben und der durch ICP-MS bestimmten Massen. Es ist gut zu erkennen, dass die Massen bei keiner Probe übereinstimmen. Die Probenmasse ist bei der ersten Probe laut ICP-MS geringer und bei allen anderen Messungen deutlich höher. Die größte Differenz ist bei Probe ICP-MS_03 zu finden mit einem Wert von 3105,39 µg mehr als eingewogen wurden. Die Konsequenz daraus ist, dass hier möglicherweise systematische Unsicherheiten resultieren. Die Konzentrationen der Elemente der verwendeten Standards (Tabelle 12) korrelieren sehr gut miteinander. Bei einer zehnfachen Konzentration wird recht präzise der zehnfache Messwert erhalten.

Probe	Cu / wt%	rel. Fehler / wt%	Ag / wt%	rel. Fehler / wt%	Zn / wt%	rel. Fehler / wt%	Sn / wt%	rel. Fehler / wt%	Pb / wt%	rel. Fehler / wt%	Au / wt%	rel. Fehler / wt%	Fe / wt%	rel. Fehler / wt%
ICP- MS_01	17,6	±0,0224	79,8	±0,0237	1,31	±0,0425	0,0119	±0,000638	0,0409	±0,000608	0,106	±0,000922	1,11	±0,00708
ICP- MS_02	27,9	±0,0189	70,6	±0,0150	0,955	±0,0243	0,00523	±0,000283	0,0303	±0,000352	0,0188	±0,000261	0,462	±0,00307
ICP- MS_03	43,3	±0,0187	56,1	±0,0106	0,324	±0,0112	0,00232	±0,000150	0,0182	±0,000216	0,00641	±0,000121	0,296	±0,00195
ICP- MS_05	72,6	±0,0305	25,9	±0,00903	1,04	±0,0253	0,00336	±0,000227	0,0404	±0,000405	0,0215	±0,000278	0,450	±0,00302
ICP- MS_06	66,1	±0,0334	30,9	±0,0113	2,33	±0,0436	0,00483	±0,000312	0,0479	±0,000506	0,0553	±0,000512	0,579	±0,00393
ICP- MS_07	7,93	±0,00867	89,6	±0,0145	2,13	±0,0312	0,00147	±0,000129	0,0280	±0,000290	0,0109	±0,000171	0,336	±0,00225

Tabelle15:GewichtsprozentualeAnteilederElementeanderProbenzusammensetzung.

Aus den einzelnen Massen der Elemente wurden die Gewichtsprozentanteile berechnet, da die Werte der XRF-Messungen ebenfalls in Gewichtsprozent angegeben waren. Die Werte sind in Tabelle 15 zu finden. Es ist auffällig, dass die Messwerte für die beiden Hauptkomponenten Kupfer und Silber stark von Messung zu Messung schwanken. Die Probe ICP-MS_07 hat einen Silbergehalt von 89,563% und nur 7,929% Kupfer und Probe ICP-MS_05 besteht im Vergleich dazu aus 25,881% Silber und 72,568% Kupfer. Für Messung ICP-MS_05 wurde eine Probe an der Außenkante der gebrochenen Münze genommen und für Messung ICP-MS_07 wurde die Probe an der Bruchkante des kleinen Bruchstücks entnommen. Die beiden Stellen lagen sehr weit auseinander. Es ist möglich, dass die Durchmischung der Legierung nicht sehr vollständig oder lokal unterschiedliche war, wodurch es zu Kupfer-, oder Silberclustern kommen kann. Im Folgenden werden diese Werte mit denen aus den XRF-Messungen verglichen.

Von der gebrochenen Münze wurden zehn XRF-Messungen pro Münzseite durchgeführt und weitere 10 Messungen der Bruchkanten des großen und des kleinen Bruchstücks. In den folgenden Tabellen 16-20 sind jeweils die XRF-Messungen aufgelistet, welche nah an den Probenntnahmestellen der zugehörigen ICP-MS-Messungen durchgeführt wurden.

56

XRF-Messung	Cu /	rel.	Ag /	rel.	Zn /	rel.	Sn / wt%	rel. Fehler	Pb /	rel.	Au /	rel.	Fe / wt%	rel.
	wt%	Fehler /	wt%	Fehler /	wt%	Fehler /		1%	wt%	Fehler / %	wt%	Fehler / %		Fehler /
		%		%		%								%
ALSK_0171NO1	12,4	+2,23	85,7	+8,27	0,120	+0,00100	0,840	+0,320	0,250	+0,0400	0,650	+0,0900	0,0600	+0,00100
_0523_gB_03		-6,25		-2,42		-0,600		-0,210		-0,0400		-0,110		-2,42
ALSK_0171NO1	12,9	+2,23	85,0	+8,27	0,110	+0,00100	1,07	+0,320	0,240	+0,0400	0,620	+0,0900	0,0500	+0,00100
_0523_gB_08		-6,25		-2,42		-0,600		-0,210		-0,0400		-0,110		-2,42
ALSK_0171NO1	58,6	+5,23	39,8	+3,10	0,440	+0,0800	0,800	+0,280	0,170	+0,0100	0,160	+0,00100	0,0800	+0,0100
_0523_O_09		-2,77		-5,99		-0,0500		-0,220		-0,0200		-0,500		-0,0100
ALSK_0171NO1	58,7	+5,23	39,9	+3,10	0,410	+0,0800	0,620	+0,280	0,110	+0,0100	0,250	+0,00100	0,0700	+0,0100
_0523_0_10		-2,77		-5,99		-0,0500		-0,220		-0,0200		-0,500		-0,0100
ALSK_0171NO1	58,4	+5,23	40,5	+3,10	0,480	+0,0800	0,160	+0,280	0,140	+0,0100	0,280	+0,00100	0,0500	+0,0100
_0523_R_09		-2,77		-5,99		-0,0500		-0,220		-0,0200		-0,500		-0,0100
ALSK_0171NO1	58,5	+5,23	40,3	+3,10	0,470	+0,0800	0,270	+0,280	0,120	+0,0100	0,290	+0,00100	0,0500	+0,0100
_0523_R_10		-2,77		-5,99		-0,0500		-0,220		-0,0200		-0,500		-0,0100
ICP-MS-Probe														
ICP-MS_01	17,6	±0,0224	79,8	±0,0237	1,31	±0,0425	0,0119	±0,000638	0,0409	±0,000608	0,106	±0,000922	1,11	±0,00708
ICP-MS_02	27,9	±0,0189	70,6	±0,0150	0,955	±0,0243	0,00523	±0,000283	0,0303	±0,000352	0,0188	±0,000261	0,462	±0,00307

Tabelle 16: XRF-Messungen, die in der Nähe der Probenentnahmestellen für ICP-MS_01 und ICP-MS_02 gemessen wurden.

Abbildung 22: Logarithmische Auftragung der in Tabelle 16 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen. Die Proben ICP-MS_01 und ICP-MS_02 wurden beide aus der Mitte des großen Bruchstücks der Münze ALSK_0171NO1_0523 entnommen, weshalb die XRF-Messungen welche in diesem Bereich durchgeführt wurden zum Vergleich ausgewählt worden sind. Die Messungen _gB_03 und _gB_08 wurden an der Mitte der Bruchkante durchgeführt und die Messungen _O_09, _O_10, sowie _R_09 und _R_10 waren Messungen in der Mitte der Münzoberfläche jeweils auf der Vorder- (O) und der Rückseite (R). Es lässt sich schnell erkennen, dass die XRF-Messungen an den Oberflächen eine deutlich andere Zusammensetzung zeigen als die ICP-MS-Ergebnisse. Vermutlich sind die XRF-Messpunkte zu weit von den Probenentnahmestellen entfernt, um diese miteinander vergleichen zu können. Die XRF-Messungen an der Bruchkante hingegen zeigen ein ganz anderes Bild. Vergleicht man diese mit der Zusammensetzung der Probe ICP-MS 01, so ist eine Abweichung im Silber- und Kupfergehalt von einigen wenigen Prozentpunkten zu erkennen, jedoch ist diese Abweichung deutlich geringer als die von ICP-MS_02, welche sich im niedrigen zweistelligen Prozentpunktebereich befindet. Die Fehlerbereiche der von XRF und ICP-MS sind für die Hauptkomponenten Kupfer und Silber ähnlich groß. Der Fehlerbereich bei den Spurenelementen ist bei den Messungen ICP-MS_01 und ICP-MS_02 jedoch deutlich größer, als bei den XRF-Daten.

XRF-Messung	Cu /	rel.	Ag /	rel.	Zn /	rel.	Sn / wt%	rel.	Pb /	rel.	Au / wt%	rel. Fehler	Fe / wt%	rel.
	wt%	Fehler /	wt%	Fehler /	wt%	Fehler /		Fehler / %	wt%	Fehler / %		1%		Fehler /
		%		%		%								%
ALSK_0171NO1	10,9	+2,23	87,4	+8,27	0,110	+0,00100	0,590	+0,320	0,220	+0,0400	0,730	+0,0900	0,0400	+0,00100
_0523_gB_01		-6,25		-2,42		-0,600		-0,210		-0,0400		-0,110		-2,42
ALSK_0171NO1	37,0	+2,23	61,2	+8,27	0,130	+0,00100	1,05	+0,320	0,0900	+0,0400	0,300	+0,0900	0,260	+0,00100
_0523_gB_06		-6,25		-2,42		-0,600		-0,210		-0,0400		-0,110		-2,42
ALSK_0171NO1	61,5	+5,23	37,7	+3,10	0,350	+0,0800	0,0500	+0,280	0,140	+0,0100	0,280	+0,00100	0,0600	+0,0100
_0523_O_01		-2,77		-5,99		-0,0500		-0,220		-0,0200		-0,500		-0,0100
ICP-MS-Probe														
ICP-MS_03	43,3	±0,0187	56,1	±0,0106	0,324	±0,0112	0,00232	±0,000150	0,0182	±0,000216	0,00641	±0,000121	0,296	±0,00195

Tabelle 17: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_03 gemessen wurden.

Abbildung 23: Logarithmische Auftragung der in Tabelle 17 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen.

Die Probe ICP-MS_03 ist mit Ihrer Zusammensetzung recht nah an der XRF-Messung _gB_06. Die beiden Messungen _gB_01 und _gB_06 sind an sehr ähnlichen Stellen durchgeführt worden, weshalb es ungewöhnlich ist, dass deren Werte für die Zusammensetzung so stark voneinander abweichen. Der Einfluss der Probenoberfläche wirkt sich sehr wahrscheinlich auf die Elementzusammensetzung von Messung _gB_06 aus. Die Probe ICP-MS_03 wurde etwas näher an der Oberseite der Münze entnommen. Aus diesem Grund sind die erhaltenen Ergebnisse von ICP-MS_01 und _gB_06 vermutlich näher beieinander. Die XRF-Ergebnisse von _gB_06 liegen recht genau zwischen denen von _gB_01 und _0_01, woraus sich folgern lässt, dass der Silbergehalt im Zentrum der Münze deutlich höher ist als auf der Münzoberfläche. Wie zuvor bereits beobachtet sind die Fehlerbereiche der Hauptkomponenten der XRF-Daten, sowie der ICP-MS-Daten recht ähnlich. Der Fehlerbereich der Spurenelemente ist bei den ICP-MS-Daten erneut deutlich größer, als bei den XRF-Daten.

XRF-Messung	Cu / wt%	rel. Fehler / %	Ag / wt%	rel. Fehler / %	Zn / wt%	rel. Fehler / %	Sn / wt%	rel. Fehler / %	Pb / wt%	rel. Fehler / %	Au / wt%	rel. Fehler / %	Fe / wt%	rel. Fehler / %
ALSK_0171NO1 _0523_O_03	50,7	+5,23 -2,77	48,5	+3,10 -5,99	0,350	+0,0800 -0,0500	0,120	+0,280 -0,220	0,120	+0,0100 -0,0200	0,220	+0,00100 -0,500	0,0700	+0,0100 -0,0100
ALSK_0171NO1 _0523_R_03	61,2	+5,23 -2,77	37,7	+3,10 -5,99	0,370	+0,0800 -0,0500	0,210	+0,280 -0,220	0,130	+0,0100 -0,0200	0,260	+0,00100 -0,500	0,0500	+0,0100 -0,0100
ICP-MS-Probe														
ICP-MS_05	72,6	±0,0305	25,9	±0,00903	1,04	±0,0253	0,00336	±0,000227	0,0404	±0,000405	0,0215	±0,000278	0,450	±0,00302

Tabelle 18: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_05 gemessen wurden.

Abbildung 24: Logarithmische Auftragung der in Tabelle 18 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen.

Die Probe ICP-MS_05 wurde an der Außenkante des großen Bruchstücks entnommen. Dabei wurde etwas Material vom Münzrand mit einem Skalpell abgeschabt. Da der Münzrand nicht mit XRF vermessen wurde, können lediglich die Messungen O_03 und R_03 mit der ICP-MS-Probe verglichen werden. Die beiden XRF-Messungen zeigen, einen hohen Kupferanteil in der Oberflächenschicht, dieser

wird von der ICP-MS-Probe jedoch noch übertroffen. Durch die Art der Probenentnahme wurde sehr wahrscheinlich viel korrodiertes Material der Münze aufgenommen. Des Weiteren kann der Abstand von einigen wenigen Millimeter zwischen der Probenentnahmestelle und den XRF-Messungen schon einen derartigen Unterschied ausmachen, wie bei anderen Proben zu erkennen ist. Erneut zeigt sich für die Spurenelemente ein großer Fehlerbereich bei den ICP-MS-Daten.

XRF-Messung	Cu /	rel.	Ag /	rel.	Zn /	rel.	Sn / wt%	rel.	Pb /	rel.	Au /	rel.	Fe /	rel.
	wt%	Fehler /	wt%	Fehler /	wt%	Fehler /		Fehler / %	wt%	Fehler / %	wt%	Fehler / %	wt%	Fehler /
		%		%		%								%
ALSK_0171NO1	12,1	+2,23	85,5	+8,27	0,06	+0,00100	1,65	+0,320	0,150	+0,0400	0,470	+0,0900	0,0500	+0,00100
_0523_kB_05		-6,25		-2,42		-0,600		-0,210		-0,0400		-0,110		-2,42
ALSK_0171NO1	12,1	+2,23	86,0	+8,27	0,160	+0,00100	1,03	+0,320	0,140	+0,0400	0,430	+0,0900	0,0600	+0,00100
_0523_kB_10		-6,25		-2,42		-0,600		-0,210		-0,0400		-0,110		-2,42
ICP-MS-Probe														
ICP-MS_06	66,1	±0,0334	30,9	±0,0113	2,33	±0,0436	0,00483	±0,000312	0,0479	±0,000506	0,0553	±0,000512	0,579	±0,00393

Tabelle 19: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_06 gemessen wurden.

Abbildung 25: Logarithmische Auftragung der in Tabelle 19 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen. Die Probe ICP-MS_06 wurde an der Bruchkante des kleinen Bruchstücks entnommen. Bei der Entnahme zerbröselte ein Teil der Münze Stark, wodurch nicht sichergestellt werden konnte, dass die Probe nur aus Material aus dem inneren der Münze besteht. Die Messergebnisse der Probe, im Besonderen der im Vergleich zu den beiden XRF-Messungen recht hohe Kupfergehalt, weisen darauf hin, dass viel Oberflächenmaterial in der Probe vorhanden ist. Die beiden XRF-Messungen wurden am unteren Ende der Bruchkante durchgeführt. Röntgenstrahl und Detektor waren dabei auf einen Punkt im Zentrum der Bruchkante fokussiert. Auch bei diesen ICP-MS-Daten zeigt sich eine große Unsicherheit die Spurenelemente betreffend. Der Fehlerbereich der XRF-Daten, bezogen auf Kupfer ist bei diesen Werten ebenfalls recht groß.

XRF-Messung	Cu /	rel.	Ag /	rel.	Zn /	rel.	Sn / wt%	rel.	Pb	/ rel.		Au	/	rel.	Fe	1	rel.
	wt%	Fehler /	wt%	Fehler /	wt%	Fehler /		Fehler / %	wt%	Fehle	1%	wt%		Fehler / %	wt%		Fehler /
		%		%		%											%
ALSK_0171NO1	10,5	+2,23	87,1	+8,27	0,1	+0,00100	0,4	+0,320	0,3	+0,040	00	0,7		+0,0900	0,9		+0,00100
_0523_kB_01		-6,25		-2,42		-0,600		-0,210		-0,040	0			-0,110			-2,42
ALSK_0171NO1	14,5	+2,23	74,9	+8,27	0,1	+0,00100	1,1	+0,320	0,2	+0,040	00	0,7		+0,0900	8,5		+0,00100
_0523_kB_06		-6,25		-2,42		-0,600		-0,210		-0,040	0			-0,110			-2,42
ICP-MS-Probe																	
ICP-MS_07	7,93	±0,00867	89,6	±0,0145	2,13	±0,0312	0,00147	±0,000129	0,0280	±0,000)290	0,010	9	±0,000171	0,336	i	±0,00225

Tabelle 20: XRF-Messungen, die in der Nähe der Probenentnahmestelle für ICP-MS_07 gemessen wurden.

Abbildung 26: Logarithmische Auftragung der in Tabelle 20 angegebenen Werte der einzelnen Elemente. Die Elementkonzentrationen sind in wt% dargestellt inklusive dem zugehörigen positiven, sowie negativen Fehler. Die Messungen die in der Tabelle von oben nach unten aufgelistet sind, sind im Diagramm von links nach rechts aufgetragen.

Die Probenentnahme für ICP-MS_07 stellte kein Problem dar. Am oberen Ende der Bruchkante des kleinen Bruchstücks war das Material deutlich stabiler, weshalb eine Probe aus einer Inneren Münzschicht entnommen werden konnte. Dies wird durch die Nähe der durch ICP-MS bestimmten Zusammensetzung zu den Werten der beiden XRF-Messungen _kB_01 und _kB_06 bestätigt. Im Fall von _kB_01 weicht der Gehalt an Silber nur um 2,46% von dem der ICP-MS-Messung ab. Die Messunsicherheit von Kupfer ist bei ICP-MS_07 geringer als bei den XRF-Daten. Die Silberwerte der XRF-Daten, sowie der Silbergehalt bestimmt durch ICP-MS zeigen einen sehr geringen Fehler. Die Fehlerbereiche der Spurenelemente sind erneut bei den ICP-MS-Daten deutlich größer, als bei den XRF-Daten.

Die Proben ICP-MS_01, ICP-MS_02, ICP-MS_03 und ICP-MS_07 unterstreichen die Vermutung, dass die beiden Hauptkomponenten Kupfer und Silber nicht gut durchmischt sind. Der Silbergehalt nimmt in den äußeren Schichten ab, der Kupfergehalt nimmt dort zu. Des Weiteren sieht es danach aus, dass die Gehalte an Zinn, Blei und Gold durch die XRF-Messung prinzipiell überschätzt werden. Da die Proben in der Vorbereitung für ICP-MS mithilfe von konzentrierter Salpetersäure gelöst wurden, kann es sein, dass sich dort nicht alle Materialien gleich schnell, beziehungsweise gleich gut gelöst haben. Salpetersäure sollte jedoch alle aufgeführten Elemente, mit Ausnahme von Gold, gut lösen können.

Die folgende Tabelle 21 zeigt Die Abweichungen der verschiedenen Elemente zwischen den XRF-Ergebnissen und den ICP-MS-Ergebnissen. Dazu wurden die Gewichtsprozentgehalte der ICP-MS von denen der XRF subtrahiert. Beispielhaft werden die Daten von ICP-MS_01 und gB_03, gB_08, O_09, O_10, R_09 und R_10 genauer betrachtet.

XRF-Messung	Cu/%-	Ag/%-	Zn/%-	Sn/%-	Pb/%-	Au/%-	Fe/%-
	Punkte						
ALSK_0171NO1_0523_gB_03	-5,23	5,88	-1,19	0,828	0,209	0,544	-1,05
ALSK_0171NO1_0523_gB_08	-4,67	5,15	-1,20	1,06	0,199	0,514	-1,06
ALSK_0171NO1_0523_0_09	41,0	-40,0	-0,868	0,788	0,129	0,0542	-1,03
ALSK_0171NO1_0523_0_10	41,1	-40,0	-0,898	0,608	0,0691	0,144	-1,04
ALSK_0171NO1_0523_R_09	40,9	-39,4	-0,828	0,148	0,099	0,174	-1,06
ALSK_0171NO1_0523_R_10	40,9	-39,6	-0,838	0,258	0,08	0,184	-1,06

Tabelle 21: Auflistung der Abweichungen der Elementzusammensetzungen von ICP-MS_01 zu XRF-Messungen, die in der Nähe der Probenentnahmestelle durchgeführt wurden.

Wie in Tabelle 21 ist die Abweichung des Silbergehalts für die Messungen gB_03 und gB_08 bei 5,88 respektive 5,15 Prozentpunkten. Die Abweichung im Silbergehalt liegt bei den Messungen an der Münzoberfläche O_09, O_10, R_09 und R_10 bei 40,04, 39,97, 39.39 und 39,57. Die Abweichungswerte für die Oberflächenmessungen sind etwa um den Faktor sieben größer als bei den Messungen der Bruchkante. Ein sehr ähnliches Bild ist für die Kupfergehälter zu erkennen, was daran liegt, dass Kupfer und Silber die beiden Hauptkomponenten sind und deshalb negativ linear zusammenhängen. Die negative lineare Korrelation zwischen den beiden Komponenten ist daran zu erkennen, dass die beiden Komponenten vom Betrag her die gleiche Abweichung aufweisen, jedoch mit einem umgekehrten Vorzeichen. Weicht der Wert von Silber nach oben ab, so weicht der Wert für Kupfer um etwa die gleiche Anzahl an Prozentpunkten nach unten ab. Die Gehalte der Spurenelemente Zink und Eisen sind in der ICP-MS-Messung meist um einen Prozentpunkt oberhalb der des jeweiligen Gehalts bestimmt durch XRF. Der Zink-Gehalt mit ICP-MS bestimmt ist etwa doppelt so groß, wie der mithilfe von XRF bestimmte Zink-Gehalt. Die Abweichung den Eisengehalt betreffend ist sehr auffällig, da bei XRF der Eisengehalt bei deutlich unter einem Masseprozent liegt mit 0,05%-0,09%, doch bei ICP-MS bei 1,11% liegt. Die Gehalte der schwereren Spurenelemente zeigen einen gegenläufigen Trend. In den XRF-Messungen werden Zinn-Gehalte von bis zu 1,07% erhalten, wohingegen bei der ICP-MS nur ein Zinngehalt von 0,01% bestimmt werden konnte. Der Bleigehalt liegt bei der ICP-MS bei einem Wert von 0,04%. Die XRF-Messungen ergeben für diesen Wert das dreibis sechsfache mit bis zu 0,25%. Auch der Goldgehalt ist bei der ICP-MS deutlich geringer, als bei den XRF-Messungen. Für die ICP-MS wurde ein Goldgehalt von 0,11% ermittelt. Die XRF-Werte liegen bis zu 0,54 Prozentpunkte darüber. Aufgrund der niedrigen Röntgenenergien der leichten Elemente Zink und Eisen kann es dazu kommen, dass deren Strahlung innerhalb der Münze selbst absorbiert wird und somit gedämpft wird. Der Zinngehalt kann durch den Anteil an Silber beeinflusst werden, denn die beiden Elemente liegen mit Ihren Röntgenenergien sehr nah beieinander, weshalb es sein kann, dass die Systemsoftware des XRF-Messgeräts Intensität der einfallenden Silberstrahlung als Strahlung von Zinn kategorisiert.

Abschließend kann festgehalten werden, dass auch die ICP-MS-Ergebnisse mit Vorsicht zu bertachten sind. Die Probengeometrie hat zwar keinen Einfluss auf die Messergebnisse, jedoch können Inhomogenitäten der Proben auf dem mikroskopischen Niveau einen sehr großen Einfluss haben, beispielsweise, wenn die Durchmischung der Legierung nicht perfekt ist, oder wenn gegebenenfalls mikroskopische Ausfällungen vorliegen. Es wird lediglich eine sehr kleine Probenmenge untersucht, weshalb der Einfluss einer solchen schlechten Durchmischung enorm sein kann. Dieses Problem könnte durch einen chemischen Aufschluss an einer größeren Probenmenge behoben werden, dies wäre jedoch stark zerstörend für die Probe, weshalb diese Herangehensweise für viele Proben vermutlich keine Alternative ist. Die ICP-MS ist prinzipiell in der Lage sehr präzise Elementkonzentrationen zu bestimmen, doch ist sie letztlich nur dann für archäometrische Proben geeignet, wenn eine repräsentative Probe in Lösung gebracht werden kann.

3.4. PIXE verglichen mit XRF

In der folgenden Abbildung 27 ist ein typisches PIXE-Spektrum zu erkennen. Die PIXE-Messungen wurden im Rahmen der Wiederaufnahme von PIXE-Messungen am Institut für Kernphysik durchgeführt. Die resultierenden Spektren wurden behelfsweise auf die Linienverhältnisse hin ausgewertet, da das für die Quantitative Analyse notwendige Programm (z.B. GUPIX siehe Abschnitt 1.1.3.) noch nicht vorliegt. Die Absorptionseigenschaften von Protonen- und Röntgenstrahlung sind sehr verschieden. Röntgenstrahlung unterliegt im Wesentlichen einem Lambert-Beer-Gesetz und nimmt aus diesem Grund mit zunehmender Probentiefe exponentiell ab. Protonen besitzen eine von Ihrer Energie abhängige Reichweite. Daraus folgt, dass die PIXE-Messungen spezifisch eine Probentiefe von etwa 300 µm(SRIM^[14]) darstellen, wohingegen der Großteil der Röntgenabsorption oberflächennah erfolgt. Im Idealfall wird also die Oberflächenschicht der Probe durchdrungen^[1].PIXE sollte unterschiedlichen konsistentere Ergebnisse liefern als XRF, wenn die Messergebnisse der XRF-Messungen durch Inhomogenitäten an der Oberfläche entstehen.

Abbildung 27: Auftragung der Intensität über die Detektorkanäle der PIXE-Messung von PIXE_ALSK_0047_R_01. Der Peak von Cu- $K_{\alpha 1}$ (roter Pfeil) ist bei Kanal 322 zu finden der von Ag- $K_{\alpha 1}$ (blauer Pfeil) bei Kanal 998.

Mithilfe der in Abbildung 27 dargestellten Auftragung konnten die Peakflächen der K_{α} -Strahlungen von Kupfer und Silber ermittelt werden. Für Cu- K_{α} wurde dazu der Bereich zwischen den Kanälen 279-348 integriert (roter Pfeil) und für Ag-K_a der Bereich zwischen den Kanälen 943-1050 (blauer Pfeil). Genutzt wurde die Integralfunktion des Programms Origin 2019. Nun konnte ein Verhältnis der Kupferund Silberintensitäten bestimmt werden, indem die Peakfläche von Cu-Ka durch die von Ag-K_{α} geteilt wurde. Die Linienverhältnisse der PIXE-Messungen, sowie die Konzentrationsverhältnisse der XRF-Messungen werden in den folgenden Tabellen 22-29 aufgelistet. Als Fehler wurde für die PIXE-Messungen die Standardabweichung genutzt und mit dieser der Fehler in % berechnet. Der Fehler der Konzentrationsverhältnisse der XRF-Messungen wurde ähnlich bestimmt. Zunächst wurde die Standardabweichung der Kupfer- und der Silbergehalte bestimmt. Mithilfe Fehlerfortpflanzung der konnte aus den beiden Standardabweichungen ein Gesamtfehler für das Konzentrationsverhältnis bestimmt werden.

Messung	IntCuKa/IntAgKa	Standardabweichung	Fehler / %
PIXE_ALSK_0047_R_01	0,272	±0,0261	±9,62
PIXE_ALSK_0047_R_02	0,192	±0,0261	±13,6
PIXE_ALSK_0047_R_03	0,219	±0,0261	±11,9
PIXE_ALSK_0047_R_04	0,240	±0,0261	±10,9
PIXE_ALSK_0047_R_05	0,258	±0,0261	±10,1
PIXE_ALSK_0047_R_06	0,243	±0,0261	±10,7
PIXE_ALSK_0047_R_07	0,235	±0,0261	±11,1
Mittelwert	0,237	±0,0261	±11,0

Tabelle 22: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0047 von Kupfer und Silber. Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %.

Messung	Cu / Ag	Fehler / %
XRF_ALSK_0047_O_01	0,0283	±24,4
XRF_ALSK_0047_O_02	0,0186	±36,4
XRF_ALSK_0047_O_03	0,0272	±25,2
XRF_ALSK_0047_O_04	0,0330	±20,9
XRF_ALSK_0047_O_05	0,0349	±19,9
XRF_ALSK_0047_O_06	0,0406	±17,1
XRF_ALSK_0047_O_07	0,0225	±30,8
XRF_ALSK_0047_O_08	0,0241	±28,3
XRF_ALSK_0047_O_09	0,0375	±18,5
XRF_ALSK_0047_O_10	0,0373	±18,5
XRF_ALSK_0047_R_01	0,0277	±24,8
XRF_ALSK_0047_R_02	0,0271	±25,3
XRF_ALSK_0047_R_03	0,0251	±27,4
XRF_ALSK_0047_R_04	0,0302	±22,6
XRF_ALSK_0047_R_05	0,0361	±19,2
XRF_ALSK_0047_R_06	0,0365	±18,8
XRF_ALSK_0047_R_07	0,0177	±38,4
XRF_ALSK_0047_R_08	0,0266	±25,7
XRF_ALSK_0047_R_09	0,0393	±17,5
XRF_ALSK_0047_R_10	0,0394	±17,5
Mittelwert	0,0305	±22,6

Tabelle 23: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0047. Die Menge an Spurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in %, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber.

Messung	IntCuKa/IntAgKa	Standardabweichung	Fehler / %
PIXE_ALSK_0048_O_01	7,31	±4,90	±67,0
PIXE_ALSK_0048_O_02	10,7	±4,90	±46,0
PIXE_ALSK_0048_O_03	14,5	±4,90	±33,7
PIXE_ALSK_0048_O_04	17,3	±4,90	±28,4
PIXE_ALSK_0048_O_05	8,10	±4,90	±60,5
PIXE_ALSK_0048_O_06	4,85	±4,90	±101
PIXE_ALSK_0048_O_07	3,97	±4,90	±123
PIXE_ALSK_0048_O_08	4,51	±4,90	±109
Mittelwert	8,90	±4,90	±55,0

Tabelle 24: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0048 von Kupfer und Silber. Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %.

Messung	Cu / Ag	Fehler / %
XRF_ALSK_0048_O_01	0,500	±29,1
XRF_ALSK_0048_O_02	0,597	±27,0
XRF_ALSK_0048_O_03	0,147	±69,0
XRF_ALSK_0048_O_04	0,296	±39,9
XRF_ALSK_0048_O_05	0,203	±52,6
XRF_ALSK_0048_O_06	0,259	±44,0
XRF_ALSK_0048_O_07	0,396	±33,1
XRF_ALSK_0048_O_08	0,620	±26,6
XRF_ALSK_0048_O_09	0,340	±36,1
XRF_ALSK_0048_O_10	0,338	±36,4
XRF_ALSK_0048_R_01	0,524	±28,5
XRF_ALSK_0048_R_02	0,691	±25,7
XRF_ALSK_0048_R_03	0,593	±27,2
XRF_ALSK_0048_R_04	0,604	±26,9
XRF_ALSK_0048_R_05	0,530	±28,5
XRF_ALSK_0048_R_06	0,490	±29,4
XRF_ALSK_0048_R_07	0,760	±25,1
XRF_ALSK_0048_R_08	0,416	±32,0
XRF_ALSK_0048_R_09	0,252	±44,6
XRF_ALSK_0048_R_10	0,255	±44,1
Mittelwert	0,420	±31,9

Tabelle 25: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0048. Die Menge an Spurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in %, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber.

Messung	IntCuKa/IntAgKa	Standardabweichung	Fehler / %
PIXE_ALSK_0171_O_01	28,0	±8,05	±28,7
PIXE_ALSK_0171_O_02	13,5	±8,05	±59,6
PIXE_ALSK_0171_O_03	30,5	±8,05	±26,4
PIXE_ALSK_0171_O_04	29,9	±8,05	±26,9
Mittelwert	25,5	±8,05	±31,6

Tabelle 26: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0171 von Kupfer und Silber. Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %.

Messung	Cu / Ag	Fehler / %
XRF_ALSK_0171_O_01	0,962	±30,0
XRF_ALSK_0171_O_02	1,01	±29,9
XRF_ALSK_0171_O_03	0,722	±31,2
XRF_ALSK_0171_O_04	0,420	±38,6
XRF_ALSK_0171_O_05	0,544	±34,1
XRF_ALSK_0171_O_06	0,239	±56,9
XRF_ALSK_0171_O_07	1,40	±31,0
XRF_ALSK_0171_O_08	0,924	±29,9
XRF_ALSK_0171_O_09	1,62	±32,6
XRF_ALSK_0171_O_10	1,63	±32,6
XRF_ALSK_0171_R_01	1,11	±30,0
XRF_ALSK_0171_R_02	1,09	±30,1
XRF_ALSK_0171_R_03	1,13	±29,9
XRF_ALSK_0171_R_04	1,10	±30,1
XRF_ALSK_0171_R_05	0,586	±32,9
XRF_ALSK_0171_R_06	0,651	±31,8
XRF_ALSK_0171_R_07	0,883	±30,0
XRF_ALSK_0171_R_08	1,03	±29,8
XRF_ALSK_0171_R_09	0,978	±29,8
XRF_ALSK_0171_R_10	0,984	±29,8
Mittelwert	0,884	±30,0

Tabelle 27: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0171. Die Menge an Spurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in %, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber.

Messung	IntCuKa/IntAgKa	Standardabweichung	Fehler / %
PIXE_ALSK_0171_NO1_O_01	26,3	±4,40	±16,8
PIXE_ALSK_0171_NO1_O_02	17,0	±4,40	±25,9
PIXE_ALSK_0171_NO1_O_03	19,6	±4,40	±22,5
PIXE_ALSK_0171_NO1_O_04	25,8	±4,40	±17,0
PIXE_ALSK_0171_NO1_O_05	28,6	±4,40	±15,4
PIXE_ALSK_0171_NO1_O_06	24,1	±4,40	±18,3
Mittelwert	23,6	±4,40	±18,7

Tabelle 28: Berechnete Verhältnisse der PIXE-Messungen der Münze ALSK_0171_NO1 von Kupfer und Silber. Angegeben sind des Weiteren die Standardabweichung und der Fehler der Messwerte in %.

Messung	Cu / Ag	Fehler / %
XRF_ALSK_0171NO1_0523_O_01	1,63	±27,3
XRF_ALSK_0171NO1_0523_O_02	0,259	±45,3
XRF_ALSK_0171NO1_0523_O_03	1,05	±25,1
XRF_ALSK_0171NO1_0523_O_04	1,15	±25,5
XRF_ALSK_0171NO1_0523_O_05	1,00	±25,2
XRF_ALSK_0171NO1_0523_O_06	1,03	±25,1
XRF_ALSK_0171NO1_0523_O_07	1,12	±25,3
XRF_ALSK_0171NO1_0523_O_08	1,01	±25,3
XRF_ALSK_0171NO1_0523_O_09	1,47	±26,7
XRF_ALSK_0171NO1_0523_O_10	1,47	±26,6
XRF_ALSK_0171NO1_0523_R_01	1,27	±25,7
XRF_ALSK_0171NO1_0523_R_02	0,988	±25,3
XRF_ALSK_0171NO1_0523_R_03	1,62	±27,3
XRF_ALSK_0171NO1_0523_R_04	1,48	±26,6
XRF_ALSK_0171NO1_0523_R_05	1,19	±25,4
XRF_ALSK_0171NO1_0523_R_06	1,59	±27,2
XRF_ALSK_0171NO1_0523_R_07	1,26	±25,6
XRF_ALSK_0171NO1_0523_R_08	1,11	±25,4
XRF_ALSK_0171NO1_0523_R_09	1,44	±26,4
XRF_ALSK_0171NO1_0523_R_10	1,45	±26,5
Mittelwert	1,17	±25,4

Tabelle 29: Verhältnisse von Kupfer und Silber der XRF-Messungen von ALSK_0171_NO1. Die Menge an Spurenelementen wurde für diese Werte ausgeschlossen. Angegeben ist des Weiteren der Fehler in %, berechnet aus den Standardabweichungen der Messwerte für Kupfer und Silber.

Messung	IntCuKa/IntAgKa	Fehler / %
PIXE_ALSK_0047	0,237	±11,0
XRF_ALSK_0047	0,0305	±22,6
PIXE_ALSK_0048	8,90	±55,0
XRF_ALSK_0048	0,420	±31,9
PIXE_ALSK_0171	25,5	±31,6
XRF_ALSK_0171	0,884	±30,0
PIXE_ALSK_0171_NO1	23,6	±18,7
XRF_ALSK_0171NO1	1,17	±25,4

Tabelle 30: Berechnete Mittelwerte der verschiedenen Messreihen von PIXE und XRF. Aufgelistet sind jeweils die Münzen mit der zugehörigen Messmethode gefolgt von den Verhältnissen zwischen Kupfer und Silber und dem zugehörigen Fehler.

In Tabelle 30 sind die Mittelwerte der Linienverhältnisse (PIXE) und der Konzentrationsverhältnisse (XRF) aufgelistet. Zudem sind die jeweiligen Fehlerwerte in % angegeben. Da die Auswertung der PIXE-Daten ohne entsprechende Software durchgeführt wird, wird folgende Betrachtung angestellt. Die Mittelwerte und Fehler der Linienverhältnisse (PIXE) und die Konzentrationsverhältnisse und Fehler (XRF) werden miteinander verglichen.

Werden die Fehlerwerte betrachtet, lässt sich deutlich erkennen, dass die Messungenauigkeit der PIXE-Daten im Allgemeinen kleiner ist, als die der XRF-Daten. Die PIXE-Daten der Münze ALSK_0048 weisen einen größeren Fehler auf, als die XRF-Daten der gleichen Münze mit ±55,0 % (PIXE) zu ±31,9 % (XRF). Die Fehler der PIXE-Daten und der XRF-Daten der Münze ALSK_0171 liegen in einem sehr ähnlichen Bereich mit ±31,6 % (PIXE) und ±30,0 % (XRF). Bei zwei Münzmessungen liegt der Fehler der PIXE-Daten recht deutlich unter den Fehlerwerten der XRF-Daten. Diese sind die Messungen der Münze ALSK_0047 mit einem Fehler von ±11,0 % (PIXE) zu ±22,6 % (XRF) und die Münze ALSK_0171_NO1 mit ±18,7 % (PIXE) zu ±25,4 % (XRF). Dies bestätigt den anfänglich genannten Befund, dass die XRF-Daten stark von der Oberflächengeometrie der Proben beeinflusst werden, wohingegen die PIXE-Daten einen recht gut definierten Bereich unter der Probenoberfläche abbilden, der durch die Eindringtiefe, also durch die Energie der Protonen beeinflusst wird.
Zusammenfassend kann festgehalten werden, dass PIXE ein homogeneres Bild darstellt, als XRF. Mit einer entsprechenden Umrechnung z.B. mit GUPIX könnten aus den PIXE-Daten zumindest für die Hauptkomponenten präzisere Elementkonzentrationen ermittelt werden, als mit XRF.

4. Diskussion und Ausblick

Mithilfe dieser Arbeit konnten die drei Analysemethoden ICP-MS, XRF und PIXE miteinander verglichen werden. Es zeigte sich, dass die einzelnen Analysemethoden verschiedene Vor- und Nachteile haben. Durch die ICP-MS kann eine Geometrieunabhängige Messung durchgeführt werden, die jedoch bei inhomogenen Proben, aufgrund der sehr kleinen Probenmenge, weiterhin problematisch sein kann. Hier muss bei archäologischen Artefakten die schwierige Abwägung getroffen werden, ob mit einer sehr kleinen Probenmenge "quasi-zerstörungsfrei" gearbeitet wird, oder ob für eine repräsentative Messung eine größere Probenmenge benötigt wird.

Die XRF-Messungen können sehr schnell und einfach durchgeführt werden, und liefern sofort ein Ergebnis. Durch die Größe des Geräts kann dieses auch an Fundorten direkt eingesetzt werden. Durch die große Anzahl an Messungen, die schnell durchzuführen sind können schnell Aussagen über Artefakte getroffen werden, wie beispielsweise die Einordnung der Münzen in zwei Gruppen, oder die Korrelation von verschiedenen Elementen. Zur Untersuchung der Spurenelemente ist XRF sehr gut geeignet. Die Messergebnisse haben jedoch teilweise sehr große Unsicherheiten, die nur teilweise korrigiert werden können. Die Selbstabsorption spielt eine große Rolle. Mithilfe von XMI-MSIM wurde beispielhaft ein Korrekturfaktor Kupfer-Silber-Münzen hergeleitet. Auch die Probengeometrie für und die Messgeometrie stellen wichtige Einflussfaktoren dar. Deren Einfluss wurde ebenfalls mittels XMI-MSIM-Simulationsreihen untersucht. Es konnte belegt werden, dass die Messunsicherheiten von XRF zu einem großen Teil wahrscheinlich auf die Oberflächengeometrie der Münzen zurückzuführen ist. Vermutlich würde es helfen die Probenoberfläche aufzupolieren, um Korrosion zu entfernen und den geometrischen Einfluss der Korrosionsschicht zu minimieren. In Fällen, wo dies nicht möglich ist, sind PIXE-Messungen vermutlich eine sinnvolle Alternative. Der Aufwand für eine solche Messung ist zwar deutlich größer als bei XRF, da ein Teilchenbeschleuniger für den Protonenstrahl benötigt wird und insbesondere weil beim gegenwärtigen Aufbau die Messungen im Vakuum stattfinden, jedoch sind die Werte für die Hauptkomponenten deutlich präziser, als die der XRF-Messung, was sich auf die definierte Eindringtiefe der Protonen zurückführen lässt. Mithilfe einer Auswertsoftware könnten künftig die Daten in exakte Elementkonzentrationen

umgerechnet werden und bei einer Führung des Protonenstrahls an Luft könnten deutlich mehr Messungen in einer kürzeren Zeit durchgeführt werden. Für eine Spurenelementanalyse könnte XRF auch in Zukunft interessant sein, da eine Probenaktivierung durch den Röntgenstrahl ausgeschlossen ist. Sowohl PIXE, als auch XRF besitzen je nach Anwendung das Potential, um Daten zu sammeln, welche anschließend numismatisch diskutiert werden können.

5. Literaturverzeichnis

[1] A. B. Denker, W. Opitz-Coutureau, J.; Rauschenberg, J.; Röhrich, j.; Strub, E., *Nuclear Instruments & Methods in Physics Research B* **2005**, 239, 65-70.

[2] V. Mozgai, B. Bajnoczi, Z. May, Z. Mrav, Archaeol Anthrop Sci 2021, 13.

[3] A. Van Ham-Meert, F. W. Rademakers, R. Gyselen, B. Overlaet, P. Degryse,P. Claeys, *Archaeol Anthrop Sci* 2020, *12*.

[4] K. Janssens, G. Vittiglio, I. Deraedt, A. Aerts, B. Vekemans, L. Vincze, F. Wei,
I. Deryck, O. Schalm, F. Adams, A. Rindby, A. Knochel, A. Simionovici, A. Snigirev, *X-Ray Spectrom* 2000, *29*, 73-91.

[5] D. Mamania, M. R. Singh, U. S. Lal, Surf Interface Anal 2018, 50, 947-953.

[6] C. Nocco, A. Brunetti, S. A. B. Lins, *Heritage-Basel* **2021**, *4*, 1912-1919.

[7] aT. Schoonjans, L. Vincze, V. A. Sole, M. S. del Rio, P. Brondeel, G. Silversmit, K. Appel, C. Ferrero, *Spectrochim Acta B* 2012, 70, 10-23; bT. Schoonjans, V. A. Sole, L. Vincze, M. S. del Rio, K. Appel, C. Ferrero, *Spectrochim Acta B* 2013, *82*, 36-41; cL. Vincze, K. Janssens, B. Vekemans, F. Adams, *Spectrochim Acta B* 1999, 54, 1711-1722; dL. Vincze, K. Janssens, F. Adams, K. W. Jones, *Spectrochim Acta B* 1995, *50*, 1481-1500; eL. J. Vincze, K.; Adams, F, *Spectrochim Acta B* 1993, *48*, 553-573; fL. J. Vincze, K.; Adams, F; Rivers, M.L.; Jones, K.W., *Spectrochim Acta B* 1995, *50*, 127-147.

[8] L. Bellot-Gurlet, G. Poupeau, J. Salomon, T. Calligaro, B. Moignard, J. C. Dran, J. A. Barrat, L. Pichon, *Nucl Instrum Meth B* **2005**, *240*, 583-588.

[9] https://lakschool.com/de/physik/licht-farbwahrnehmung/elektromagnetischesspektrum 28.06.2023 13:32

[10] https://www.bruker.com/en/products-and-solutions/elementalanalyzers/handheld-xrf-spectrometers/how-xrf-works.html 15.06.2023 12:32

[11] https://de.wikipedia.org/wiki/R%C3%B6ntgenfluoreszenzanalyse 28.06.202311:52

[12] https://www.researchgate.net/figure/Typical-arrangement-for-PIXE-technique_fig1_3726796501.07.2023 18:44

[13] https://www.cmam.uam.es/wp-content/uploads/2022/02/pixe.pdf

[14] J. L. Campbell, D. J. T. Cureatz, E. L. Flannigan, C. M. Heirwegh, J. A. Maxwell, J. L. Russell, S. M. Taylor, *Nucl Instrum Meth B* **2021**, *499*, 77-88.

[15] https://www.x-ray-worx.com/index.php/en/microfocus-x-ray-tubesoverview/microfocus-technology 15.06.2023 13:45

[16] https://www.merckmillipore.com/DE/de/water-purification/learning-centers/applications/inorganic-analysis/icp-

ms/_e2b.qB.s7QAAAFAniQQWTtN,nav?ReferrerURL=https%3A%2F%2Fwww.googl e.com%2F 16.06.2023 15:13

[17] J. F. B. Ziegler, J. P.; Ziegler, M. D., *SRIM The Stopping and Range of Ions in Matter, Vol. 15*, Lulu.com, **1984-2015**.

[18] XGLab (2016): Elio X-Ray Fluorescence Spectrometer Manual

[19] S. Lemke "XRF-Messungen an Münzmetallen" 2021

6. Anhang

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
AL_00	67,04 v	±0,09	29,19 v	±0,26	2,51%	±0,43	0,21%	±2,3%	0,61%	±1,6%	0,30%	±2%	0,14%	±2,01
01_0_	%	%	%	%		%								%
AL_00	67,14	±0,09	30,78	±0,25	0,80%	±0,76	0,45%	±1,42	0,49%	±1,77	0,25%	±2,18	0,09%	±2,54
61_0_ 02	%	%	%	%		%		%		%		%		%
AL_00	47,77	±0,12	49,71	±0,22	0,57%	±1,02	0,33%	±0,74	1,21%	±1,13	0,25%	±2,17	0,16%	±2,43
61_O_ 03	%	%	%	%		%		%		%		%		%
AL_00	36,50	±0,13	60,92	±0,18	0,47%	±1,07	0,78%	±1,44	0,98%	±1,07	0,18%	±2,66	0,16%	±2,4%
61_O_ 04	%	%	%	%		%		%		%		%		
AL_00	60,33	±0,11	36,13	±0,26	1,98%	±0,54	0,36%	±2,71	0,77%	±1,53	0,32%	±2,22	0,11%	±2,68
61_O_ 05	%	%	%	%		%		%		%		%		%
AL_00	62,39	±0,1%	35,03	±0,25	0,48%	±1,05	0,49%	±0,78	1,06%	±1,25	0,38%	±1,72	0,16%	±2,13
61_O_	%		%	%		%		%		%		%		%
06	65.26	+0 10/	22.01	+0.25	0.68%	+0.96	0 1 1 9/	+1 24	0 729/	±1 F1	0.220/	+1.06	0 1 1 0/	+2.47
AL_00	65,20 %	±0,1%	32,81 %	±0,25 %	0,08%	±0,80 %	0,11%	±1,24 %	0,72%	±1,51 %	0,32%	±1,90 %	0,11%	±2,47 %
07	/0		/0	/0		<i>,</i> ,,		/0		<i>,</i> ,,		<i>,</i> ,,		<i>,</i> ,,
AL_00	66,84	±0,09	30,52	±0,24	0,82%	±0,72	1,07%	±1,11	0,39%	±1,88	0,23%	±2,24	0,12%	±2,14
61_O_	%	%	%	%		%		%		%		%		%
08	<u> </u>			10.05	0.670/		0.000/		0.500/	14.62	0.000/	.1.07	0.400/	10.04
AL_00	65,19 %	±0,09 %	32,88 %	±0,25 %	0,67%	±0,84 %	0,22%	±1,54 %	0,59%	±1,62 %	0,32%	±1,97 %	0,13%	±2,21 %
01_0_	70	70	70	70		70		70		70		70		70
AL_00	64,84 V	±0,09	32,66	±0,25	0,92%	±0,72	0,46%	±1,76	0,61%	±1,59	0,39%	±1,72	0,14%	±2,15
10	%	%	%	%		%		%		%		%		%
AL_00	64,80	±0,1%	33,37	±0,25	0,83%	±0,77	0,23%	±1,87	0,41%	±1,98	0,27%	±2,12	0,10%	±2,6%
61_R_	%		%	%		%		%		%		%		
01														
AL_00	70,85 v	±0,09	27,48	±0,28	0,85%	±0,76	0,09%	±1,46	0,37%	±2,15	0,25%	±2,29	0,12%	±2,29
01_K_ 02	70	70	70	70		70		70		70		70		70
AL_00	64,89	±0,09	33,56	±0,24	0,71%	±0,82	0,11%	±0,91	0,38%	±2,02	0,25%	±2,17	0,11%	±2,44
61_R_	%	%	%	%		%		%		%		%		%
03	<u></u>		22.62		0.670/	10.04	0.000/		0.460/		0.400/	10.04	0.45%	11.07
AL_00 61 R	65,56 %	±0,09 %	32,69 %	±0,24 %	0,67%	±0,81 %	0,33%	±1,24 %	0,46%	±1,// %	0,13%	±2,31 %	0,15%	±1,97 %
01_K_ 04	70	70	70	70		70		70		70		70		70
AL_00	70,53	±0,09	27,94	±0,27	0,57%	±0,9%	0,31%	±1,05	0,32%	±2,22	0,20%	±2,49	0,13%	±2,11
61_R_	%	%	%	%				%		%		%		%
05	66.20	+0.00	21.05	+0.22	0.959/	+0.70/	0.210/	+0.69	0.249/	+2.02	0.26%	±1.0F	0.210/	+1 50
AL_00 61 R	66,29 %	±0,09 %	31,85 %	±0,23 %	0,85%	±0,7%	0,21%	±0,68 %	0,34%	±2,02 %	0,20%	±1,95 %	0,21%	±1,59 %
06	70	70	70	70				70		70		70		70
AL_00	67,29	±0,09	30,28	±0,26	0,75%	±0,8%	0,79%	±0,81	0,52%	±1,76	0,23%	±2,32	0,15%	±2,06
61_R_	%	%	%	%				%		%		%		%
07	62 55	+0 10/	24.05	+0.25	0.000/	+0 71	0.490/	±1 FF	0 5 9 9/	±1 66	0.26%	±2 1 4	0.099/	12 04
AL_00	53,55 %	±0,1%	34,05 %	±0,25 %	0,99%	±0,71 %	0,48%	±1,55 %	0,58%	±1,66 %	0,26%	±2,14 %	0,08%	±2,84 %
08		10.55	/0		0.755/		4.000		0.4554		0.0		0.4	
AL_00	67,81 %	±0,09 %	29,62 %	±0,26 ∞	0,72%	±0,8%	1,08%	±1,54 ∞	0,42%	±1,92 %	0,24%	±2,22 %	0,11%	±2,32 %
01_K_ 09	70	70	70	70				70		70		70		70
AL_00	68,29	±0,09	29,96	±0,26	0,76%	±0,78	0,29%	±1,24	0,40%	±1,98	0,20%	±2,47	0,10%	±2,46
61_R_ 10	%	%	%	%		%		%		%		%		%
Mittel	63,66		34,07		0.88%		0.42%		0.58%		0.26%		0.13%	
wert	%		%		-,-0,0		-,,		-,-0,0		-,_0,0		-,_0,0	

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
AL_00	50,36	±0,11	47,73	±0,2%	0,68%	±0,87	0,55%	±0,9%	0,22%	±2,47	0,35%	±1,72	0,11%	±2,69
62_0_ 01	%	%	%			%				%		%		%
AL_00	48,31	±0,12	49,27	±0,21	0,71%	±0,91	1,16%	±0,76	0,17%	±2,53	0,28%	±2,03	0,10%	±3,01
62_0_ 02	%	%	%	%		%		%		%		%		%
AL_00	44,97	±0,13	53,65	±0,21	0,44%	±1,17	0,34%	±1,04	0,21%	±2,7%	0,30%	±1,99	0,08%	±3,39
62_O_ 03	%	%	%	%		%		%				%		%
AL_00	42,27	±0,14	56,52	±0,21	0,25%	±1,59	0,39%	±1,21	0,20%	±2,8%	0,28%	±2,04	0,08%	±3,5%
62_O_ 04	%	%	%	%		%		%				%		
AL_00	48,99	±0,12	49,53	±0,21	0,36%	±1,27	0,54%	±1,72	0,20%	±2,28	0,26%	±2,14	0,12%	±2,73
62_O_ 05	%	%	%	%		%		%		%		%		%
AL_00	52,28	±0,11	44,88	±0,21	0,65%	±0,9%	1,73%	±1,13	0,16%	±2,96	0,17%	±2,48	0,13%	±2,49
62_O_	%	%	%	%				%		%		%		%
06 AL 00	12 51	+0.12	55.20	+0.21	0.40%	+1.26	0.41%	+1 19	0 16%	+2.05	0.20%	+2 /2	0.08%	+2.26
62 O	45,54 %	±0,15 %	33,20 %	±0,21 %	0,40%	±1,20 %	0,41%	±1,10 %	0,10%	±3,05 %	0,20%	±2,42 %	0,08%	±3,20 %
07		, -				,-		,-						
AL_00	42,92	±0,12	55,56	±0,19	0,34%	±1,24	0,45%	±2,55	0,23%	±2,35	0,41%	±1,84	0,08%	±3,24
62_O_	%	%	%	%		%		%		%		%		%
08	11 92	+0.14	56 74	+0.21	0 22%	+1 28	0.40%	+1 61	0.22%	+2 58	0 2/%	+1 02	0 1/1%	+2 72
62 0	41,02 %	±0,14 %	%	%	0,5570	*1,58 %	0,4070	%	0,2370	*2,50 %	0,5470	%	0,1470	%
09														
AL_00	51,84	±0,12	46,56	±0,22	0,47%	±1,12	0,59%	±1,18	0,20%	±2,8%	0,23%	±2,32	0,12%	±2,73
62_0_ 10	%	%	%	%		%		%				%		%
AL_00	53,59	±0,11	43,92	±0,22	0,44%	±1,12	1,47%	±1,46	0,17%	±2,99	0,33%	±1,8%	0,09%	±3,04
62_K_ 01	%	%	%	%		%		%		%				%
AL 00	43,37	±0,14	55,01	±0,21	0,45%	±1,2%	0,56%	±1,12	0,18%	±2,98	0,33%	±2,42	0,10%	±3,03
62_R_ 02	%	%	%	%				%		%		%		%
AL_00	50,04	±0,12	48,22	±0,23	0,49%	±1,14	0,68%	±1,56	0,24%	±2,65	0,17%	±2,33	0,16%	±2,45
62_R_	%	%	%	%		%		%		%		%		%
03	40.24	+0.14	40.02	+0.25	0.00%	+0.02	0.20%	+2.26	0.10%	+2.00/	0.26%	+2 44	0.089/	+2.02
AL_00 62 R	49,34 %	±0,14 %	49,03 %	±0,25 %	0,90%	±0,92 %	0,20%	±2,30 %	0,19%	±2,8%	0,20%	±2,44 %	0,08%	±3,82 %
04		, -				,-		,-						
AL_00	41,78	±0,13	56,88	±0,2%	0,51%	±1,09	0,21%	±2,03	0,20%	±2,68	0,31%	±1,9%	0,10%	±2,64
62_R_	%	%	%			%		%		%				%
	48 46	+0 12	49 79	+0.21	0.45%	+1 13	1 01%	+1 79	0 15%	+3.2%	0.07%	+2.3%	0.08%	+3 3%
62 R	%	%	%	%	0,4070	%	1,01/0	%	0,1070	±3,270	0,0770	12,370	0,0070	±3,370
06														
AL_00	41,08	±0,14	57,40	±0,2%	0,38%	±1,27	0,50%	±2,47	0,22%	±2,56	0,34%	±2,16	0,06%	±2,89
62_R_	%	%	%			%		%		%		%		%
AL 00	44,89	±0.13	53,76	±0,21	0.44%	±1.2%	0.26%	±1.53	0.19%	±2,9%	0.38%	±2,13	0.08%	±3,54
62_R_	%	%	%	%	-,	,_/0	-,_0,0	%	-,_0,0	,,,,,,	-,,	%	-,00/0	%
08														
AL_00	50,32	±0,12	48,02	±0,22	0,45%	±1,14	0,55%	±1,6%	0,23%	±2,6%	0,33%	±1,97	0,11%	±2,87
62_К_ 09	%	%	%	%		%						%		%
AL_00	50,49	±0,12	48,02	±0,22	0,41%	±1,2%	0,46%	±1,87	0,20%	±2,78	0,34%	±1,72	0,09%	±2,76
62_R_ 10	%	%	%	%				%		%		%		%
Mittel	47,03		51,28		0,48%		0,62%		0,20%		0,28%		0,10%	
wert	%		%											

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	+0.17	wt%	+0.19	wt%	±1 01	wt%	+2 20/	wt%	±1 12	wt%	+1 00/	wt%	±2.0E
63 O	27,01 %	±0,17 %	70,90 %	±0,18 %	0,20%	±1,81 %	0,3270	±2,270	0,99%	±1,12 %	U,4470	±1,9%	0,15%	±2,85 %
01	-	-	-	-		-								-
AL_00	30,14	±0,17	67,66	±0,2%	0,36%	±1,43	0,82%	±0,89	0,51%	±1,71	0,40%	±2,17	0,10%	±3,35
63_U_ 02	%	%	%			%		%		%		%		%
AL_00	22,19	±0,2%	75,17	±0,19	0,21%	±1,87	1,11%	±1,86	0,84%	±1,25	0,39%	±2,05	0,09%	±2,94
63_O_	%		%	%		%		%		%		%		%
03	15 43	+0.27	<u>87 76</u>	+0 19	0 18%	+2 19	0 53%	+2 46	0.66%	+1 5%	በ	+2 3%	0 08%	+3 98
63_0_	%	%	%	%	0,1070	~2,13 %	0,3370	%	0,0070	±1,370	0,3370	±2,370	0,0070	%
04														
AL_00	12,11 %	±0,29 %	85,76 %	±0,18 %	0,13%	±2,48 %	0,86%	±0,72 %	0,62%	±1,4%	0,46%	±1,9%	0,06%	±3,33 %
05_0_	70	70	70	70		70		/0						/0
AL_00	47,78	±0,13	49,46	±0,22	0,82%	±0,88	0,87%	±2,03	0,58%	±1,69	0,39%	±1,87	0,09%	±3,25
63_0_ 06	%	%	%	%		%		%		%		%		%
AL 00	27,88	±0,18	69,64	±0,19	0,24%	±1,73	0.90%	±1,88	0,81%	±1,31	0,44%	±2%	0.09%	±2,8%
63_O_	%	%	%	%	- /	%	- / -	%	- , -	%	-,		- / -	,
07	11 11	+0.20	96.90	+0.10	0.170/	+2 12	0.63%	+2 54	0.710/	±1 07	0.20%	+20/	0 1 2 0/	+2.07
63 O	11,11 %	±0,29 %	80,89 %	±0,18 %	U,17%	±2,12 %	0,0270	±2,54 %	U,/170	±1,27 %	0,39%	±2%	U,1270	±3,07 %
08														
AL_00	24,68	±0,19	72,75	±0,19	0,21%	±1,87	0,97%	±1,99	0,80%	±1,32	0,48%	±1,89	0,12%	±3,23
63_U_ 09	%	%	%	%		%		%		%		%		%
AL_00	24,74	±0,19	73,13	±0,19	0,23%	±1,77	0,60%	±2,54	0,71%	±1,34	0,46%	±1,93	0,13%	±3,06
63_O_	%	%	%	%		%		%		%		%		%
	43,33	+0.13	54,59	+0.2%	0.31%	+1.36	0.66%	+1.01	0 59%	+1.54	0 37%	+1.62	0 14%	+2.56
63_R_	%	%	%	±0,270	0,31/0	%	0,0070	%	0,0070	%	0,3770	%	0,1170	%
01					- 100/				- 100/		- 100/			
AL_00 63 R	29,54 %	±0,17 %	69,14 %	±0,19 %	0,19%	±1,93 %	0,23%	±2,39 %	0,42%	±1,85 %	0,40%	±2,08 %	0,09%	±2,79 %
02	<i>,</i> ,,	<i>,</i> ,,	<i>,</i> ,,	<i>,</i> ,,		<i>,</i> ,,		<i>,</i> ,		<i>,</i> ,,		<i>,</i> ,		<i>,</i> ,
AL_00	25,98	±0,17	71,37	±0,18	0,28%	±1,5%	1,30%	±1,6%	0,63%	±1,37	0,38%	±1,98	0,07%	±2,59
63_R_ 03	%	%	%	%						%		%		%
AL_00	34,13	±0,15	63,79	±0,19	0,21%	±1,68	0,79%	±1,69	0,70%	±1,3%	0,25%	±2,24	0,11%	±3,04
63_R_	%	%	%	%		%		%				%		%
04 ΔΙ 00	32.31	+0.16	65.72	+0.2%	0.21%	+1.82	0.76%	+1.33	0.54%	+1.61	0.38%	+1.95	0.09%	+3.43
63_R_	%	%	%		0,22	%	0,1 2.2	%	0,0	%	0,02.2	%	0,027	%
05	47.45	10.10	54.07	10.20/	0.000/	:1.10	0.010/	10.00/	0.220/	12.01	0.040/	-4 55	0.420/	
AL_00 63 R	47,15 %	±0,12 %	51,07 %	±0,2%	0,38%	±1,19 %	0,61%	±0,9%	0,32%	±2,01 %	0,34%	±1,55 %	0,12%	±2,73 %
06	<i>,</i> ,,	<i>,</i> ,,	,			<i>,</i> ,,				<i>,</i> ,,		,.		
AL_00	40,97	±0,14	56,99	±0,2%	0,25%	±1,6%	0,88%	±1,58	0,49%	±1,75	0,31%	±1,97	0,11%	±2,96
63_к_ 07	%	%	%					%		%		%		%
AL_00	32,21	±0,16	65,89	±0,19	0,27%	±1,55	0,51%	±1,44	0,67%	±1,39	0,38%	±2,08	0,08%	±3,28
63_R_	%	%	%	%		%		%		%		%		%
08 AL 00	40.81	±0.13	57.32	±0.2%	0.32%	±1.36	0.56%	±1.34	0.64%	±1.47	0.27%	±1.89	0.09%	±3.21
63_R_	%	%	%		0,0	%	0,02.2	%	0,0	%	0,2	%	0,027	%
09					2.26%	.1.20	2.540/		0.540/	.1.40	2 20%		2.200/	
AL_00 63 R	40,93 %	±0,13 %	57,08 %	±0,2%	0,36%	±1,26 %	0,64%	±1,27 %	0,61%	±1,48 %	0,28%	±2,24 %	0,09%	±3,25 %
10	<i>,</i> ,,	<i>,</i> ,,	<i>,</i> ,,			<i>,</i> ,,		<i>,</i> ,		<i>,</i> ,		<i>,</i> ,		/0
Mittel	30,52		67,35		0,28%		0,73%		0,64%		0,38%		0,10%	
wert	%		%											

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
	69.67	+0.1%	WL%	+0.29	WL%	+1 02	0.88%	+1 95	WU%	+1 72	0 21%	+2 63	0.08%	+2 85
64_O_ 01	%	10,170	%	%	0,0070	%	0,0070	%	0,3370	%	0,2170	%	0,0070	%
AL_00 64_0_	68,13 %	±0,09 %	30,05 %	±0,26 %	0,62%	±0,9%	0,14%	±1,43 %	0,49%	±1,84 %	0,17%	±2,75 %	0,40%	±1,27 %
AL_00 64 O	66,54 %	±0,1%	30,65 %	±0,27 %	1,07%	±0,7%	0,62%	±2,17 %	0,36%	±2,21 %	0,22%	±2,44 %	0,54%	±1,13 %
03														
AL_00 64_0_ 04	66,86 %	±0,11 %	31,14 %	±0,3%	0,56%	±1,11 %	0,92%	±1,67 %	0,20%	±3,38 %	0,21%	±2,89 %	0,11%	±2,86 %
AL 00	70.24	±0.09	27.44	±0.28	0.91%	±0.75	0.73%	±1.02	0.37%	±2.18	0.16%	±2.9%	0.14%	±2.15
64_O_ 05	%	%	%	%	-,	%	-,	%	-)	%	-,	,_,	-,	%
AL_00 64_O_ 06	74,32 %	±0,09 %	24,19 %	±0,29 %	0,92%	±0,71 %	0,14%	±1,41 %	0,28%	±2,47 %	0,04%	±2,67 %	0,11%	±2,21 %
	68 16	+0.09	28.83	+0.27	0.91%	+0 74	1 40%	+1 47	0.47%	+1 89	0 17%	+2 86	0.07%	+2 92
64_O_ 07	%	%	%	%	0,0170	%	1,1070	%	0,1770	%	0,1770	%	0,0770	%
AL_00	68,69	±0,1%	29,81	±0,28	0,55%	±1%	0,27%	±1,78	0,46%	±2,03	0,14%	±3,2%	0,08%	±3,03
64_O_ 08	%		%	%				%		%				%
AL_00	71,04	±0,09	27,11	±0,28	0,94%	±0,73	0,17%	±2,13	0,42%	±2,06	0,19%	±2,69	0,13%	±2,19
64_O_ 09	%	%	%	%		%		%		%		%		%
AL_00	71,10	±0,09	27,20	±0,28	0,70%	±0,86	0,31%	±3,19	0,41%	±2,09	0,16%	±2,27	0,12%	±2,3%
64_0_ 10	%	%	%	%		%		%		%		%		
AL_00	68,56	±0,1%	29,25	±0,28	0,73%	±0,85	0,71%	±2,12	0,43%	±2,03	0,17%	±2,82	0,15%	±2,12
64_K_ 01	%		%	%		%		%		%		%		%
AL 00	70,77	±0,09	27,54	±0,28	0,68%	±0,85	0,36%	±2,15	0,36%	±2,17	0,14%	±2,76	0,15%	±1,99
64_R_ 02	%	%	%	%		%		%		%		%	·	%
AL_00	68,92	±0,1%	29,03	±0,28	0,83%	±0,8%	0,38%	±2,34	0,40%	±2,13	0,32%	±2,07	0,11%	±2,47
64_R_ 03	%		%	%				%		%		%		%
AL_00	57,62	±0,15	40,69	±0,33	0,47%	±1,53	0,52%	±2,67	0,39%	±2,84	0,21%	±3,4%	0,09%	±4,24
64_R_ 04	%	%	%	%		%		%		%				%
AL_00	68,39 v	±0,1%	29,95	±0,28	0,87%	±0,8%	0,16%	±2,39	0,39%	±2,19	0,11%	±3,58	0,12%	±2,42
64_K_ 05	%		%	%				%		%		%		%
AL_00	74,79	±0,09	23,45	±0,3%	0,98%	±0,7%	0,12%	±2,83	0,33%	±2,33	0,19%	±2,68	0,13%	±2,05
64_R_ 06	%	%	%					%		%		%		%
AL_00	68,69	±0,09	29,23	±0,27	0,63%	±0,9%	0,90%	±1,84	0,31%	±2,33	0,17%	±2,78	0,06%	±3,15
64_R_ 07	%	%	%	%				%		%		%		%
AL_00	55,16	±0,12	42,80	±0,24	0,48%	±1,15	0,66%	±2,38	0,66%	±1,66	0,15%	±3,02	0,09%	±3,21
64_R_ 08	%	%	%	%		%		%		%		%		%
AL_00	72,27	±0,09	25,18	±0,29	1,78%	±0,52	0,07%	±2,83	0,31%	±2,35	0,25%	±2,31	0,15%	±2%
64_R_ 09	%	%	%	%		%		%		%		%		
AL_00	71,78	±0,09	25,20	±0,29	2,05%	±0,48	0,31%	±2,46	0,32%	±2,3%	0,19%	±2,65	0,15%	±1,98
64_R_ 10	%	%	%	%		%		%				%		%
Mittel	68,59		29,35		0,86%		0,49%		0,39%		0,18%		0,15%	
wert	%		%											

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	+0.00	wt%	+0.28	wt%	+0.46	wt%	+2 22	wt%	±2.74	wt%	±2 2%	wt%	±0 72
AL_00 65_0_	% %	±0,05 %	25,54 %	±0,28 %	∠,∠1/0	±0,40 %	0,4370	±2,52 %	U,2270	±2,74 %	U,2070	⊥∠,∠ ⁄0	1,1270	±0,72 %
01				10.05	÷ 000/				2 1 1 0/		- 100/		40/	12.00
AL_00	68,13 %	±0,09 %	29,96 %	±0,25 %	1,09%	±0,64 %	0,39%	±2,56 %	0,11%	±3,68 %	0,19%	±2,38 %	0,14%	±2,02 %
02	70	70	70	70		70		70		70		70		70
AL_00	40,97	±0,13	57,37	±0,2%	0,51%	±1,08	0,36%	±1,68	0,34%	±2,03	0,39%	±1,79	0,07%	±3,63
65_O_ 03	%	%	%			%		%		%		%		%
AL_00	15,67	±0,32	82,05	±0,23	0,59%	±1,48	0,74%	±3%	0,31%	±2,67	0,53%	±2,28	0,10%	±4,84
65_O_	%	%	%	%		%	-		-	%	-	%		%
04	21 82	+0.21	75.86	+0.2%	0 60%	+1 00	0.43%	+1 72	0.33%	+2.18	0.76%	∔1 5 8	0.10%	+2 03
65_0_	21,05 %	±0,2± %	%	±0,270	0,0970	*1,05 %	0,4370	±1,72 %	0,3370	±2,10 %	0,7070	±1,55 %	0,1070	±2,55 %
05														
AL_00	24,47 ∞	±0,2%	72,56 ∞	±0,2%	0,68%	±1,11 ∞	0,34%	±2,1%	0,54%	±1,73 ∞	0,65%	±1,75 ∞	0,76%	±1,43 %
06	70		70			70				70		70		70
AL_00	74,53	±0,08	23,68	±0,27	0,72%	±0,74	0,69%	±1,88	0,13%	±3,1%	0,08%	±3,17	0,15%	±1,73
65_O_	%	%	%	%		%		%				%		%
AL_00	59%	±0,09	29,03	±0,24	10,89	±0,19	0,49%	±1,82	0,18%	±2,75	0,26%	±1,98	0,15%	±1,8%
65_O_		%	%	%	%	%	-	%	-	%	-	%		
08	25 15	±0.15	62.80	+0.2%	0.65%	±1 02	0.08%	±2.1%	0.38%	±1 Q0/	0 47%	±1 00	0.08%	±2.18
65_0_	35,45 %	±0,15 %	02,09 %	IU,270	0,03%	±1,05 %	0,0070	ΞΖ, 170	0,3070	II,970	0,4770	±1,99 %	0,00%	±3,10 %
09														
AL_00	35,63 %	±0,15	62,81	±0,2%	0,65%	±1,02	0,18%	±2,31	0,39%	±1,99	0,26%	±2%	0,08%	±2,86
10	70	70	70			70		70		70				70
AL_00	61,61	±0,1%	36,23	±0,23	0,99%	±0,7%	0,48%	±1,44	0,24%	±2,5%	0,34%	±1,71	0,10%	±2,56
65_R_	%		%	%				%				%		%
AL_00	58,36	±0,11	40,17	±0,24	0,66%	±0,94	0,24%	±3,13	0,22%	±2,81	0,25%	±2,29	0,10%	±2,88
65_R_	%	%	%	%		%	-	%	-	%	-	%		%
02	27 77	+0 18	64.81	+0.22	0 56%	+1 24	0.82%	+2 1%	0.42%	+2 07	0.48%	+2 17	0 15%	+2.2%
65_R_	52,17 %	±0,10 %	%	±0,22 %	0,3070	**,~ * %	0,0270	±∠,±/∪	U,4270	±2,07 %	U,4070	±2,17 %	0,1370	±3,270
03														
AL_00 65 R	20,46 %	±0,24 %	77,42 %	±0,21 %	0,42%	±1,49 %	0,46%	±2,45 %	0,55%	±1,77 %	0,61%	±1,85 %	0,07%	±4,91 %
04	/0	/0	/0	70		/0		70 		/0		/0		70
AL_00	47,75	±0,13	50,45	±0,22	0,46%	±1,19	0,47%	±1,81	0,32%	±2,28	0,47%	±1,73	0,08%	±2,79
65_R_ 05	%	%	%	%		%		%		%		%		%
AL_00	26,66	±0,19	71,39	±0,2%	0,44%	±1,33	0,29%	±3,09	0,43%	±1,88	0,71%	±1,62	0,08%	±3,2%
65_R_	%	%	%			%	-	%	-	%	-	%		
06	20.36	+0 15	50 15	+0.22	0 57%	+1 15	0.24%	+2 /1	0.29%	+2 11	0 3 2 %	+2 02	0.08%	+2 13
65_R_	39,30 %	±0,±5 %	39,13 %	±0,22 %	0,3770	*1,15 %	0,24/0	±3,41 %	0,2970	±2,44 %	0,3270	±2,02 %	0,0070	±3,±3 %
07														
AL_00	44,71 %	±0,13	53,26 ∞	±0,21	0,62%	±1%	0,72%	±1,43	0,28%	±1,59 ∞	0,34%	±1,95 ∞	0,07%	±3,2%
05_N_ 08	70	70	70	70				70		70		70		
AL_00	38,99	±0,15	58,38	±0,22	1,38%	±0,74	0,23%	±4,27	0,42%	±2,05	0,51%	±1,63	0,10%	±3,6%
65_R_	%	%	%	%		%		%		%		%		
AL 00	38.80	±0.15	58,41	±0.22	1.58%	±0.69	0.19%	±1.91	0.44%	±2%	0.50%	±2.07	0.08%	±3,59
65_R_	%	%	%	%	2,02	%	•,==:-	%	0,1		0,02.2	%	0,02.2	%
10	40.74		54.50		1 2 2 0/		0.410/		0.00%		0.120/		0.100/	
wert	42,74 %		54,59 %		1,32%		0,41%		0,33%		0,42%		0,18%	

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	+0.11	wt%	+0.25	wt%	+0.83	wt%	+2.05	wt%	+2.20	wt%	+1.04	wt%	+2.12
AL_00	59,45 %	±0,11 %	38,44 %	±0,25 %	0,83%	±0,83 %	0,42%	±2,85 %	0,30%	±2,38 %	0,38%	±1,84 %	0,18%	±2,13 %
01	70	70	70	70		<i>,</i> ,,		70		70		70		70
AL_00	61,41	±0,1%	36,39	±0,25	0,93%	±0,76	0,31%	±1,73	0,53%	±1,77	0,28%	±1,71	0,15%	±2,18
75_0_	%		%	%		%		%		%		%		%
AL 00	55.34	+0.11	41.85	+0.23	0.99%	+0.76	1.17%	+1.68	0.35%	+1.71	0.16%	+2.44	0.13%	+2.54
75_0_	%	%	%	%	-,	%	_,,_	%	-,	%	-,	%	-,	%
03														
AL_00	57,06	±0,11	40,47 v	±0,24	1,26%	±0,68	0,59%	±2,41	0,35%	±2,2%	0,11%	±2,79	0,16%	±2,31
75_0_ 04	70	70	70	70		70		70				70		70
AL_00	70,42	±0,09	27,57	±0,28	1,06%	±0,69	0,17%	±2,26	0,34%	±2,27	0,26%	±2,27	0,18%	±1,85
75_0_	%	%	%	%		%		%		%		%		%
05	62.65	+0.10/	22.01	+0.25	0.00%	+0.74	0.970/	±1 0F	0.20%	+2.22	0.25%	+1 07	0.120/	+2.26
75 O	63,65 %	±0,1%	33,81 %	±0,25 %	0,90%	±0,74 %	0,87%	±1,85 %	0,29%	±2,32 %	0,35%	±1,87 %	0,13%	±2,20 %
06			-	-				-		-		-		-
AL_00	64,97	±0,1%	32,97	±0,25	0,86%	±0,76	0,30%	±1,44	0,47%	±1,84	0,27%	±2,08	0,16%	±2,04
75_0_	%		%	%		%		%		%		%		%
AL 00	62.47	±0.1%	35.49	±0.25	0.82%	±0.82	0.44%	±1.18	0.32%	±2.35	0.30%	±2.16	0.16%	±2.15
	%		%	%		%		%		%		%		%
08														
AL_00	66,70 %	±0,1%	31,71 %	±0,26 %	0,72%	±0,85 %	0,14%	±2,17 %	0,33%	±2,26 %	0,26%	±2,21 %	0,15%	±2,14 %
09	70		70	70		70		70		70		70		70
AL_00	66,36	±0,1%	31,41	±0,26	0,75%	±0,82	0,74%	±2,04	0,33%	±2,25	0,27%	±2,18	0,14%	±2,17
75_0_	%		%	%		%		%		%		%		%
	72 / 3	+0.09	25 9/	+0.29	0.70%	+0.84	0.31%	+1 88	0.24%	+2.68	0.23%	+2.4%	0 1/1%	+2.05
75_R_	%	£0,05 %	23,54 %	±0,25 %	0,7070	±0,84 %	0,5170	%	0,2470	÷2,00 %	0,2370	±2,470	0,1470	%
01														
AL_00	65,95 %	±0,1%	32,25	±0,26	0,63%	±0,91	0,49%	±2,4%	0,26%	±2,56	0,31%	±2,04	0,11%	±2,49
02	70		70	70		70				70		70		70
AL_00	63,60	±0,1%	35,28	±0,25	0,54%	±1,01	0,06%	±2,95	0,23%	±2,76	0,18%	±2,71	0,12%	±2,49
75_R_	%		%	%		%		%		%		%		%
03	65.40	+0.1%	22.22	+0.26	0.26%	+1 24	0.21%	+1 77	0.40%	+2 11	0.08%	+2 02	0 1 2 %	+2 11
75_R_	% %	10,170	33,33 %	±0,20 %	0,30%	1,24 %	0,31/0	%	0,4078	<u>-</u> 2,11 %	0,0870	±3,02 %	0,1270	±2,44 %
04														
AL_00	63,69 %	±0,1%	34,55	±0,25	0,86%	±0,77	0,17%	±1,06	0,39%	±2,04	0,20%	±2,48	0,14%	±2,22
75_K_ 05	70		70	70		70		70		70		70		70
AL_00	68,33	±0,09	30,51	±0,25	0,60%	±0,87	0,01%	±1,67	0,18%	±2,86	0,28%	±2,02	0,09%	±2,59
75_R_	%	%	%	%		%		%		%		%		%
06	61 56	+0.10/	27.02	+0.25	0.50%	+0.07	0 170/	+2.46	0.26%	+2 57	0.220/	+2.42	0 1 70/	+2.12
75 R	81,50 %	10,1%	37,02 %	±0,25 %	0,59%	±0,97 %	0,17%	13,40 %	0,20%	±2,57 %	0,2270	±2,45 %	0,17%	±2,12 %
07			-	-				-		-		-		-
AL_00	66,92	±0,1%	31,34	±0,27	0,65%	±0,92	0,52%	±1,66	0,20%	±2%	0,24%	±2,28	0,13%	±2,37
75_R_ 08	%		%	%		%		%				%		%
AL_00	71,11	±0,09	27,25	±0,28	0,59%	±0,93	0,54%	±2,42	0,29%	±2,49	0,06%	±3,32	0,17%	±1,96
75_R_	%	%	%	%		%		%		%		%		%
09	74 0 4	10.00	27.00	10.00	0.710/	10.05	0.0.00	10.15	0.200/	12.11	0.45%	12.00	0.470/	14.04
AL_00 75 R	71,24 %	±0,09 %	27,38 %	±0,28 %	0,/1%	±0,85 %	0,04%	±2,15 %	0,30%	±2,44 %	0,15%	±3,02 %	0,17%	±1,94 %
10_1	/0	/0	/0	/0		/0		/0		/0		/0		/0
Mittel	64,90		33,25		0,77%		0,39%		0,32%		0,23%		0,15%	
wert	%		%											

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%		wt%		wt%	10.65	wt%		wt%	10.50	wt%		wt%	12.01
AL_00	70,63 %	±0,09 %	27,01 %	±0,28 %	1,16%	±0,65 %	0,53%	±2,22 %	0,27%	±2,52 %	0,26%	±2,22 %	0,15%	±2,01 %
01	70	,.	,,,	,,,		,,,		,.		70		70		,,,
AL_00	65,02	±0,1%	32,29	±0,27	0,73%	±0,87	0,16%	±2,71	1,48%	±1,1%	0,21%	±2,55	0,11%	±2,58
76_0_	%		%	%		%		%				%		%
02 AL 00	67.64	+0.1%	29.62	+0.27	1.48%	+0.6%	0.47%	+2.63	0.32%	+1.92	0.32%	+2.08	0.15%	+2.09
76_0_	%	_0)_/0	%	%	2,1070	_0,0/0	0,1770	%	0,0270	%	0,02/0	%	0,20,0	%
03														
AL_00	73,46	±0,09	24,62	±0,29	0,88%	±0,74	0,34%	±2,31	0,30%	±2,41	0,25%	±2,27	0,15%	±1,92
76_0_ 04	%	%	%	%		%		%		%		%		%
AL_00	71,62	±0,09	26,77	±0,28	0,95%	±0,71	0,07%	±1,95	0,27%	±2,51	0,18%	±2,48	0,14%	±2,06
76_0_	%	%	%	%		%		%		%		%		%
05	72.04	10.00	24.65	10.20	4.000/	10.00	0.04%	14.04	0.26%	12 50/	0.22%	12.22	0.4.40/	12.01
AL_00	72,81 %	±0,09 %	24,65 %	±0,28 %	1,06%	±0,66 %	0,84%	±1,84 %	0,26%	±2,5%	0,23%	±2,32 %	0,14%	±2,01 %
06	70	,.	,,,	,,,		,,,		,.				70		,.
AL_00	69,50	±0,09	28,11	±0,27	0,82%	±0,75	1,06%	±1,64	0,26%	±2%	0,18%	±2,61	0,06%	±2,79
76_0_	%	%	%	%		%		%				%		%
AL 00	68.94	±0.09	28.57	±0.26	0.87%	±0.73	0.91%	±1.76	0.34%	±2.16	0.24%	±2.26	0.12%	±2.17
76_0_	%	%	%	%		%	- , - ·	%	- , - ·	%	-, -	%		%
08														
AL_00	72,11 %	±0,09 %	26,18 %	±0,27 %	0,85%	±0,74 %	0,24%	±1,86 %	0,28%	±2,41 %	0,20%	±2,48 %	0,15%	±1,95 %
09	70	70	70	70		70		70		70		70		70
AL_00	72,23	±0,09	26,39	±0,27	0,70%	±0,81	0,19%	±2,11	0,23%	±2,67	0,13%	±3,08	0,14%	±2,03
76_O_	%	%	%	%		%		%		%		%		%
AL 00	68.58	±0.1%	29.88	±0.28	0.80%	±0.82	0.02%	±1.41	0.38%	±2.18	0.22%	±2.49	0.11%	±2.46
76_R_	%	-, -	%	%	-,	%	- ,	%	-,	%	-, -	%		%
01														
AL_00 76 R	71,26 %	±0,1%	26,36 %	±0,3%	0,70%	±0,89 %	0,55%	±1,06 %	0,81%	±1,55 %	0,21%	±2,68 %	0,12%	±2,37 %
02	,,,		,,,			,,,		,,,		,.		70		,.
AL_00	69,69	±0,09	29%	±0,27	0,65%	±0,88	0,01%	±1,67	0,44%	±1,94	0,10%	±3,23	0,11%	±2,46
76_R_	%	%		%		%		%		%		%		%
AL 00	68.60	±0.1%	29.39	±0.28	0.91%	±0.77	0.45%	±1.23	0.35%	±2.3%	0.22%	±2.5%	0.09%	±2.8%
76_R_	%	-, -	%	%		%	-,	%	-,	,	-, -	,	-,	,
04														
AL_00 76 R	68,90 %	±0,09 %	29,71 %	±0,27 %	0,60%	±0,92 %	0,20%	±1,13 %	0,25%	±2,64 %	0,23%	±2,41 %	0,12%	±2,34 %
05	70	70	70	70		70		70		70		70		70
AL_00	69,54	±0,09	29,11	±0,27	0,45%	±1,04	0,15%	±0,72	0,32%	±2,27	0,29%	±2,09	0,13%	±2,18
76_R_	%	%	%	%		%		%		%		%		%
	62 34	+0 11	36.06	+0.26	0.55%	+1 03	0.22%	+1 71	0 51%	+1 88	0.20%	+2 61	0.12%	+2 53
76_R_	%	%	%	%	0,3370	%	0,2270	%	0,5170	%	0,2070	%	0,1270	%
07														
AL_00	65,50 %	±0,11	32,89	±0,28	0,38%	±1,26	0,05%	±1,6%	0,81%	±1,05	0,27%	±2,32	0,10%	±2,84
76_K_ 08	70	70	70	70		70				70		70		70
AL_00	58,98	±0,11	39,39	±0,24	0,56%	±0,99	0,17%	±1,56	0,58%	±1,69	0,21%	±2,64	0,11%	±2,64
76_R_	%	%	%	%		%		%		%		%		%
	59 20	+0 11	39 31	+0.24	0.45%	+1 11	0.23%	+1 36	0.49%	+1 83	0.20%	+2 5%	0 11%	+2 66
76_R_	%	%	%	%	0,70	~, %	5,2370	%	5,7570	%	0,2070	/0	0,11/0	%
10														
Mittel	68,33 %		29,77 %		0,78%		0,34%		0,45%		0,22%		0,12%	
were	/0		/0											

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	±0.18	wt%	+0.10	wt%	±1 01	wt%	+2 6%	wt%	±2.01	wt%	±1 92	wt%	±2.20
81_0	27,01 %	±0,10 %	71,20 %	±0,19 %	0,0770	±1,01 %	0,3470	IZ,0%	U,1170	±3,01 %	0,50%	±1,02 %	0,00%	±2,50 %
01														
AL_00	39,92	±0,13	58,48	±0,19	0,60%	±0,99	0,39%	±1,9%	0,14%	±3,12	0,38%	±2,09	0,09%	±3,17
81_U_ 02	%	%	%	%		%				%		%		%
AL_00	41,10	±0,14	57,66	±0,2%	0,50%	±1,12	0,09%	±2,78	0,21%	±2,71	0,36%	±2,13	0,08%	±3,19
81_0_	%	%	%			%		%		%		%		%
03 AI 00	34.38	+0.17	63,55	+0.22	1 06%	+0.89	0 39%	+2.54	0.21%	+1,99	0.29%	+2.55	0 13%	+3.4%
81_0_	%	%	%	%	1,0070	%	0,0070	%	0,2170	%	0,2370	%	0,10/0	± 3 , 170
04									- 2014				- 2011	
AL_00 81 0	11,15 %	±0,31 %	87,30 %	±0,18 %	0,40%	±1,45 %	0,24%	±2%	0,29%	±2,09 %	0,53%	±1,79 %	0,09%	±2,86 %
05	70	/0	/0	/0		/0				/0		70		70
AL_00	28,42	±0,17	69,65	±0,19	0,70%	±0,98	0,53%	±1,84	0,16%	±2,91	0,44%	±1,94	0,09%	±2,9%
81_0_ 06	%	%	%	%		%		%		%		%		
AL_00	15,46	±0,26	82,57	±0,19	1,12%	±0,88	0,16%	±1,89	0,25%	±1,67	0,32%	±2,39	0,11%	±3,22
81_0_	%	%	%	%		%		%		%		%		%
07	21 68	±0 18	72 87	±0 18	0 /1%	±1.28	0.26%	±1 Q/	0.20%	±2.48	0 17%	±1 96	0.07%	±3 03
81 O_	24,00 %	±0,10 %	13,01 %	±0,18 %	0,4170	±1,20 %	0,30%	т1,94 %	0,2070	12,40 %	U,4270	±1,90 %	0,0776	±3,05 %
08				-						·				
AL_00	17,55 %	±0,22	80,17 %	±0,18	0,27%	±1,63	1,08%	±1,86	0,27%	±2,06	0,56%	±1,66	0,09%	±2,95 ∞∕
09	70	70	70	70		70		70		70		70		70
AL_00	17,37	±0,22	80,02	±0,18	0,35%	±1,43	1,31%	±1,69	0,27%	±2,14	0,59%	±1,62	0,09%	±2,95
81_0_ 10	%	%	%	%		%		%		%		%		%
AL 00	42,39	±0,13	56,37	±0,21	0,48%	±1,15	0,17%	±2,58	0,22%	±2,62	0,27%	±2,31	0,09%	±3,21
81_R_	%	%	%	%	•	%		%		%		%		%
01	40.25	±∩ 12	18.06	+0.22	0 60%	±0 03	0 53%	±2 5/	0.23%	±2.18	0.16%	±2 81	0.07%	±2.3%
81_R_	49,23 %	±0,12 %	40,50 %	±0,22 %	0,0570	±0,93 %	0,5370	±2,54 %	0,5570	±2,10 %	0,1070	±2,61 %	0,0770	±3,370
02														
AL_00 81 R	39,27 %	±0,14 %	59,14 %	±0,2%	0,74%	±0,93 %	0,15%	±1,43 %	0,33%	±2,13 %	0,27%	±2,15 %	0,11%	±3,1%
03	70	/0	70			70		/0		70		/0		
AL_00	38,53	±0,15	60,01	±0,21	0,63%	±1,08	0,05%	±2,2%	0,16%	±3,28	0,55%	±1,93	0,07%	±3,49
81_K_ 04	%	%	%	%		%				%		%		%
AL_00	31,67	±0,16	66,96	±0,19	0,49%	±1,15	0,25%	±3,76	0,23%	±2,28	0,32%	±2,24	0,07%	±3,57
81_R_	%	%	%	%		%		%		%		%		%
05 AL 00	38.09	+0.14	60.61	+0.19	0.55%	+1.03	0.05%	+1.79	0.13%	+2.82	0.49%	+1.83	0.08%	+2.4%
81_R_	%	%	%	%	0,00,0	%	0,00,0	%	0,10,0	%	0,1375	%	0,0075	<i>⊥∟,</i> ,,,
06			40											
AL_00 81 R	33,31 %	±0,16 %	65,43 %	±0,19 %	0,45%	±1,21 %	0,22%	±3,43 %	0,11%	±3,45 %	0,43%	±2,02 %	0,05%	±3,45 %
07	70	/0	70	/0		70		/0		70		/0		/0
AL_00	16,82	±0,25	81,64	±0,19	0,24%	±1,89	0,69%	±2,53	0,12%	±3,46	0,41%	±2,11	0,08%	±3,02
81_K_ 08	%	%	%	%		%		%		%		%		%
AL_00	27,40	±0,17	70,51	±0,18	0,34%	±1,39	1,08%	±1,81	0,22%	±2,48	0,40%	±2,02	0,05%	±2,74
81_R_	%	%	%	%		%		%		%		%		%
09 ΔL 00	27.61	+0.17	71.33	+0.18	0.36%	+1.36	0.21%	+2.26	0.18%	+2.48	0.26%	+2.06	0.06%	+2.87
81_R_	%	%	%	%	0,3070	%	0,21/0	%	0,1070	%	0,2070	%	0,0070	%
10	22.07				0.550/		2 449/		2.240/		2.40%		2.200/	
Wittel	30,07 %		68,28 %		0,55%		0,41%		0,21%		0,40%		0,08%	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	% .22% ±2,18 % .29% ±2,61 % % .2% ±2,23 % % .0% ±2,62 % % .1% ±2,32 % 3% .1% ±2,22% .1% ±2,315
AL_00 73,28 10,09 24,59 10,29 0,73% 10,81 0,4% 11,82 0,28% 12,59 0,78% 12,25 0, AL_00 74,93 ±0,09 23,47 ±0,11 0,86% ±0,77 0,07% ±0,82 0,25% ±2,73 0,33% ±2,06 0,18% AL_00 73,02 ±0,09 25,57 ±0,29 0,70% ±0,84 0,12% ±1,09 0,18% ±3,16 0,30% ±2,1% 0,83% AL_00 69,67 ±0,1% 28,02 ±0,29 0,87% ±0,79 0,77% ±1,34 0,22% ±2,96 0,35% ±2,13 0,76% AL_00 69,67 ±0,1% 28,02 ±0,29 0,87% ±0,79 0,77% ±1,34 0,22% ±2,96 0,35% ±2,130 0,76% 82_0_ %<	12% ±2,18 % ************************************
11 11 <td< th=""><th>109% ±2,61 .2% ±2,23 .0% ±2,62 .0% ±2,32 .1% ±2,32 .3% ±2,2% .17% ±3,15</th></td<>	109% ±2,61 .2% ±2,23 .0% ±2,62 .0% ±2,32 .1% ±2,32 .3% ±2,2% .17% ±3,15
AL_00 74,93 ±0,09 23,47 ±0,31 0,86% ±0,77 0,07% ±0,82 0,25% ±2,73 0,33% ±2,06 0,18 AL_00 73,02 ±0,09 25,57 ±0,29 0,70% ±0,84 0,12% ±1,09 0,18% ±3,16 0,30% ±2,1% 0,3 AL_00 69,67 ±0,1% 28,02 ±0,29 0,87% ±0,79 0,77% ±1,34 0,22% ±2,96 0,35% ±2,03 0,8 AL_00 69,67 ±0,1% 28,02 ±0,29 0,87% ±0,79 0,77% ±1,34 0,22% ±2,96 0,35% ±2,03 0,8 AL_00 72,66 ±0,09 25,24 ±0,28 0,63% ±0,86 0,84% ±1,13 0,17% ±3,11 0,34% ±1,59 0,8 S2_0_ %	99% ±2,61 % *2,23 .2% ±2,23 .0% ±2,62 % * .1% ±2,32 % * .3% ±2,2% .7% ±3,15
82_O_ % % % % % % % % % % AL_00 73,02 ±0,09 25,57 ±0,29 0,70% ±0,84 0,12% ±1,09 0,18% ±3,16 0,30% ±2,1% 0, 82_O_ %	% .2% ±2,23 %
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2% ±2,23 % * .0% ±2,62 .1% ±2,32 % * .3% ±2,2% .17% ±3,15
82_O_ % % % % % % % AL_00 69,67 ±0,1% 28,02 ±0,29 0,87% ±0,79 0,77% ±1,34 0,22% ±2,96 0,35% ±2,03 0,78% 82_O_ %	% 10% ±2,62 % 1% ±2,32 % 3% ±2,2%
AL_00 69,67 ±0,1% 28,02 ±0,29 0,87% ±0,79 0,77% ±1,34 0,22% ±2,96 0,35% ±2,03 0,78 AL_00 % <td< th=""><th>10% ±2,62 % 1% ±2,32 % 3% ±2,2% 17% ±3,15</th></td<>	10% ±2,62 % 1% ±2,32 % 3% ±2,2% 17% ±3,15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1% ±2,32 %
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11% ±2,32 % 3% ±2,2% 17% ±3,15
AL_00 72,66 ±0,09 25,24 ±0,28 0,63% ±0,86 0,84% ±1,13 0,17% ±3,11 0,34% ±1,59 0,18 B2_0_ % <t< th=""><th>11% ±2,32 % 3% ±2,2% 17% ±3,15</th></t<>	11% ±2,32 % 3% ±2,2% 17% ±3,15
82_0 %	% .3% ±2,2% .7% ±3,15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13% ±2,2%
82_0_ % % % % % % % 06	
06 AL_00 66,92 ±0,1% 31,19 ±0,26 0,99% ±0,73 0,19% ±1,5% 0,19% ±2,99 0,44% ±1,54 0,0 82_0 % <t< th=""><th>17% ±3,15</th></t<>	17% ±3,15
AL_00 56,92 10,1% 31,13 10,28 0,39% 10,73 0,19% 11,3% 0,19% 12,39 0,44% 11,34 0,0 82_0_ % % % % % % % % 07 % % % % % % % % AL_00 75,03 ±0,09 23,53 ±0,29 0,74% ±0,78 0,35% ±1,97 0,20% ±2,88 0,04% ±2,84 0,1 82_0_ % <th>1770 ±5,15</th>	1770 ±5,15
07 AL_00 75,03 ±0,09 23,53 ±0,29 0,74% ±0,78 0,35% ±1,97 0,20% ±2,88 0,04% ±2,84 0,78 82_O_ % % % % % % % % % AL_00 75,93 ±0,09 22,42 ±0,3% 0,70% ±0,82 0,39% ±2,58 0,19% ±3,03 0,28% ±2,12 0,4% 82 0 %	%
AL_00 75,03 ±0,09 23,53 ±0,29 0,74% ±0,78 0,35% ±1,97 0,20% ±2,88 0,04% ±2,84 0,78 82_0_ %	
82_O_ % <th>.1% ±2,2%</th>	.1% ±2,2%
AL_00 75,93 ±0,09 22,42 ±0,3% 0,70% ±0,82 0,39% ±2,58 0,19% ±3,03 0,28% ±2,12 0,4	
	9% +2.49
	%
09	
AL_00 75,89 ±0,09 22,54 ±0,3% 0,87% ±0,73 0,09% ±2,84 0,21% ±2,89 0,32% ±2,12 0,0	18% ±2,58
82_0_ % % % % % % % % %	%
AL_00 55,88 ±0,12 41,33 ±0,25 0,76% ±0,91 1,37% ±1,63 0,19% ±3,1% 0,39% ±1,88 0,0)8% ±3,35
82_R_ % % % % % %	%
	17% +3.62
82_R_ % % % % % % % % %	%
02	
AL_00 69,12 ±0,09 27,93 ±0,28 2,05% ±0,5% 0,06% ±3,32 0,18% ±3,15 0,56% ±1,45 0,0	19% ±2,64
03	70
AL_00 67,08 ±0,1% 30,62 ±0,29 1,20% ±0,71 0,40% ±2,42 0,19% ±3,28 0,43% ±1,7% 0,	.0% ±2,83
82_R_ % % % % %	%
	4% +2 1%
82 _R % % % % % % % %	.470 12,170
05	
AL_00 69,14 ±0,09 29,38 ±0,27 0,71% ±0,84 0,03% ±3,83 0,25% ±2,62 0,40% ±1,81 0,0	19% ±2,69
82_K_ % % % % % % %	%
AL 00 44,22 ±0,14 54,04 ±0,22 0,44% ±1,23 0,36% ±2,75 0,24% ±2,61 0,62% ±1,81 0,0)7% ±2,39
82_R_ % % % % % % % %	%
AL_{00} 58% ±0,12 40,42 ±0,25 0,57% ±1,06 0,25% ±1,75 0,20% ±3,09 0,48% ±1,67 0,1	18% ±3,27 %
87 R % % % % % %	70
82_R_ % % % % % % %	
82_R_08 % </th <th>19% ±2,88</th>	19% ±2,88
82_R_08 % </th <th>)9% ±2,88 %</th>)9% ±2,88 %
82_R_ 08 %<	19% ±2,88 %
82_R_08 % </th <th>09% ±2,88 % 17% ±3,19 %</th>	09% ±2,88 % 17% ±3,19 %
82_R_08 % </th <th>09% ±2,88 % 07% ±3,19 %</th>	09% ±2,88 % 07% ±3,19 %

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	+0.1%	wt%	+0.22	wt%	±0.52	wt%	+2.46	wt%	±2.24	wt%	+2.56	wt%	+2.97
86 O	60,4∠ %	±0,170	37,50 %	±0,25 %	1,2470	±0,0∠ %	U,2470	±3,40 %	0,2970	±2,24 %	U,1570	±2,00 %	0,0870	±2,87 %
01			-			-		-		-		-		-
AL_00	62,85	±0,11	35,45	±0,28	0,66%	±1,01	0,50%	±1,76	0,23%	±3,01	0,20%	±2,81	0,11%	±2,9%
86_O_	%	%	%	%		%		%		%		%		ļ
AI. 00	62.90	+0.1%	35.66	+0.25	0.61%	+0.94	0.20%	+1.1%	0.30%	+2.36	0.20%	+2.55	0.14%	+2.27
86_O_	%	±0,±/0	%	%	0,01/0	%	0,20,0		0,0070	%	0,20,0	%	0,11,3	%
03														
AL_00	58,51	±0,11	39,28	±0,25	0,83%	±0,84	0,65%	±2,31	0,35%	±2,23	0,24%	±2,3%	0,13%	±2,58
86_U_ 04	%	%	%	%		%		%		%				%
AL 00	53,79	±0,14	44,55	±0,27	0,91%	±0,96	0,21%	±4,24	0,38%	±2,49	0,04%	±5,65	0,13%	±3,1%
86_O_	%	%	%	%	-,- :	%	-,	%	-,	%	-,	%	-,	,
05														
AL_00	52,92	±0,12	45,86	±0,24	0,60%	±1,04	0,04%	±1,12	0,37%	±2,21	0,10%	±2,22	0,11%	±3,04
86_U_ 06	%	%	%	%		%		%		%		%		%
AL_00	68,65	±0,09	29,54	±0,27	0,43%	±1,09	0,95%	±0,92	0,23%	±2,72	0,13%	±3,22	0,09%	±2,75
86_O_	%	%	%	%		%		%		%	•	%		%
07					- 7.00				- 2004		-		- 100/	10.04
AL_00	66,76 ∞	±0,1%	31,14 ∞	±0,26	0,74%	±0,84 ∞	0,81%	±1,14 ∞	0,29%	±2,46 ∞	0,14%	±3,07 ∞	0,13%	±2,31 ∞
08	70		70	70		70		70		70		70		70
AL_00	64,87	±0,1%	33,50	±0,25	0,76%	±0,81	0,33%	±1,77	0,26%	±2,31	0,13%	±2,72	0,15%	±2,13
86_O_	%		%	%		%		%		%		%		%
09	C 4 5 7	10.10/	22.42	10.25	1.040/	10.60	0.10%	14.40	0.20%	12.24	0.070/	12.80	0.110/	12.49
AL_00 86 Q	64,57 %	±0,1%	33,43 %	±0,25 %	1,04%	±0,69 %	0,49%	±1,48 %	0,29%	±2,34 %	0,07%	±3,89 %	0,11%	±2,48 %
10	<i>,</i> ,,		/0	/0		<i>,</i> 0		<i>,</i> 0		<i>,</i> 0		<i>,</i> ,,		<i>,</i> ,,
AL_00	53,54	±0,12	44,12	±0,23	1,28%	±0,67	0,42%	±2,36	0,46%	±1,88	0,10%	±3,91	0,08%	±2,64
86_R_	%	%	%	%		%		%		%		%		%
AL 00	50 39	+0 13	46 71	+0 24	1 62%	+0.65	0 44%	+1 46	0 44%	+2 05	0 13%	+3 24	0.26%	+1 98
86_R_	%	%	%	%	1,0270	±0,05 %	0,4470	∴⊥, + 0 %	0,4470	÷2,05 %	0,1370	<u>-</u> 3,∠ - %	0,2070	%
02														
AL_00	54,15	±0,11	43,69	±0,23	1,25%	±0,69	0,35%	±1%	0,32%	±2,29	0,18%	±2,62	0,07%	±3,49
86_R_ 03	%	%	%	%		%				%		%		%
AL 00	58,14	±0,11	40,57	±0,24	0.49%	±1,07	0.30%	±1,92	0.24%	±2,49	0.17%	±2,77	0.09%	±3,06
86_R_	%	%	%	%	-,	%	-,	%	-,	%	-,-	%	-,	%
04														
AL_00	51,50 %	±0,12	46,33 %	±0,22 ∞∕	0,94%	±0,8%	0,56%	±1,33 ∞∕	0,38%	±2,07 ∞∕	0,07%	±3,93	0,22%	±2,02
80_r_ 05	70	70	70	70				70		70		70		70
AL_00	56,31	±0,11	42,08	±0,23	0,84%	±0,8%	0,34%	±1,81	0,24%	±2,12	0,12%	±3,13	0,06%	±3,2%
86_R_	%	%	%	%				%		%		%		
06	5 4 5 4	:0.40	10 70	10.24	0.770/	: 2.00	1 100/	.1.5.4	0.00%	:2.24	0.120/		2.20%	12.20
AL_00 86 R	54,51 %	±0,12 %	42,73 %	±0,24 %	0,77%	±0,89 %	1,48%	±1,54 %	0,32%	±2,31 %	0,12%	±3,37 %	0,08%	±3,39 %
07	70	/0	/0	70		70		70		70		70		70
AL_00	55,10	±0,12	43,39	±0,24	0,53%	±1,11	0,49%	±2,75	0,25%	±2,63	0,15%	±3,02	0,09%	±3,33
86_R_	%	%	%	%		%		%		%		%		%
08	50.06	10.11	20.22	10.25	0.56%	11.04	0.720/	12.20/	0.20%	12 50/	0.020/	10.62	0.110/	12.02
AL_00 86 R	59,00 %	±0,11 %	39,23 %	±0,25 %	0,56%	±1,04 %	0,73%	±2,2%	0,29%	±2,5%	0,03%	±6,63 %	0,11%	±2,83 %
09	70	70	70	70		70						70		70
AL_00	58,77	±0,11	38,99	±0,25	0,95%	±0,79	0,78%	±2,11	0,26%	±2,56	0,14%	±3,14	0,09%	±3,04
86_R_	%	%	%	%		%		%		%		%		%
10 Mittol	59 30		20.60		0.85%		0.52%		0.31%		0.13%		0 1 2%	
wert	58,59 %		39,09 %		0,8576		0,5270		0,3170		0,1370		0,1270	

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
AL_00	71,98	±0,09	24,49	±0,29	2,76%	±0,41	0,25%	±2,75	0,23%	±2,71	0,10%	±2,82	0,19%	±1,72
87_0_ 01	%	%	%	%		%		%		%		%		%
AL_00	39,44	±0,14	52,93	±0,22	6,13%	±0,33	0,08%	±2,48	0,21%	±2,87	0,80%	±1,6%	0,40%	±1,66
87_O_ 02	%	%	%	%		%		%		%				%
AL_00	29,44	±0,16	62,70	±0,19	5,42%	±0,33	1,09%	±1,74	0,25%	±2,29	0,97%	±1,29	0,12%	±2,92
87_O_ 03	%	%	%	%		%		%		%		%		%
AL_00	30,55	±0,15	63,90	±0,18	3,69%	±0,4%	1,05%	±1,74	0,17%	±2,47	0,48%	±1,6%	0,16%	±2,54
87_O_ 04	%	%	%	%				%		%				%
AL_00	26,26	±0,16	67,16	±0,18	5,94%	±0,31	0,03%	±3%	0,31%	±2,02	0,18%	±2,29	0,12%	±2,87
87_O_ 05	%	%	%	%		%				%		%		%
AL_00	26,61	±0,17	65,54	±0,19	3,71%	±0,41	0,48%	±2,62	0,23%	±2,19	0,36%	±2,1%	3,06%	±0,6%
87_0_ 06	%	%	%	%		%		%		%				
AL 00	51.41	±0.12	39.58	±0.24	6.35%	±0.3%	0.06%	±2.65	0.13%	±3.61	0.41%	±2.2%	2.06%	±0.63
87_0_	%	%	%	%	-,,-		-,,-	%	-,,	%	-,	,_,_	_,	%
07	69 13	+0.00	28.06	+0.27	2 2 / 0/	±0.4E	0.25%	+2 21	0.20%	+2 06	0.200/	±1 07	0.220/	±1 2E
AL_00 87 0	00,42 %	±0,09 %	28,00 %	±0,27 %	2,54%	±0,45 %	0,25%	±2,21 %	0,20%	±2,00 %	0,56%	±1,07 %	0,55%	±1,55 %
08	70	70	70	<i>,</i> ,,		<i>,</i> ,		<i>,</i> ,		<i>,</i> ,		<i>,</i> ,,		70
AL_00	67,18	±0,1%	28,66	±0,28	2,61%	±0,45	0,45%	±2,7%	0,22%	±2,86	0,57%	±1,62	0,31%	±1,46
87_O_ 09	%		%	%		%				%		%		%
AL_00	67,08	±0,1%	28,43	±0,28	2,52%	±0,46	0,81%	±2%	0,21%	±2,94	0,64%	±1,46	0,31%	±1,46
87_0_ 10	%		%	%		%				%		%		%
AL_00	55,43	±0,11	39,15	±0,25	4,55%	±0,36	0,07%	±2,61	0,15%	±3,45	0,53%	±1,61	0,11%	±2,77
87_R_ 01	%	%	%	%		%		%		%		%		%
AL_00	57,81	±0,11	38,73	±0,25	2,20%	±0,53	0,35%	±0,84	0,22%	±2,93	0,60%	±1,83	0,10%	±2,94
87_R_ 02	%	%	%	%		%		%		%		%		%
AL 00	56,49	±0,12	38,47	±0,26	4,17%	±0,39	0,05%	±0,84	0,25%	±2,77	0,44%	±2,29	0,14%	±2,5%
87_R_ 03	%	%	%	%	,	%	.,	%	-,	%		%	-, -	,
AL_00	49,38	±0,14	45,34	±0,25	4,29%	±0,42	0,30%	±1,32	0,18%	±2,31	0,37%	±2,08	0,15%	±2,75
87_R_	%	%	%	%		%		%		%		%		%
04	60%	+0.00	26.45	+0.20	2 770/	+0.42	0.16%	+1.02	1 400/	+1 1 2	0.08%	+2.67	0 1 4 9/	+2.00
AL_00 87 R	69%	±0,09 %	26,45 %	±0,29 %	2,17%	±0,43 %	0,16%	±1,03 %	1,40%	±1,12 %	0,08%	±2,67 %	0,14%	±2,09 %
05		<i>,</i> ,	70	<i>,</i> ,,		<i>,</i> ,		<i>,</i> ,		<i>,</i> ,		<i>,</i> ,		70
AL_00	66,55	±0,1%	30,02	±0,27	2,53%	±0,45	0,05%	±3,76	0,22%	±2,83	0,52%	±1,56	0,11%	±2,45
87_R_	%		%	%		%		%		%		%		%
06	E2 64	+0.12	12 20	+0.24	2 1 2 0/	+0 E1	0 2 2 0/	±2.1E	0 1 9 0/	+2 1 /	0.220/	+1 0%	0 1 1 9/	+2.02
AL_00 87 R	53,64 %	±0,12 %	43,28 %	±0,24 %	2,13%	±0,54 %	0,33%	±2,15 %	0,18%	±3,14 %	0,33%	11,9%	0,11%	±2,92 %
07				-										
AL_00	56,91	±0,12	39,01	±0,25	3,15%	±0,45	0,39%	±2,18	0,18%	±3,23	0,25%	±2,4%	0,12%	±2,77
87_R_ 08	%	%	%	%		%		%		%				%
AL_00	58,20	±0,11	38,96	±0,26	1,85%	±0,58	0,08%	±0,95	0,26%	±2,69	0,53%	±1,87	0,11%	±2,79
87_R_ 09	%	%	%	%		%		%		%		%		%
AL_00	58,36	±0,11	38,91	±0,26	1,85%	±0,58	0,09%	±3,42	0,27%	±2,66	0,43%	±1,87	0,10%	±3,04
87_R_	%	%	%	%		%		%		%		%		%
Mittel	53 01		41 99		3.55%		0.32%		0.27%		0.45%		0.41%	
wert	%		%		2,2370		0,02/0		2,2,70		5,1570		2,12/0	

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	10.14	wt%	10.22	wt%	11.24	wt%	12 52	wt%	11.40	wt%	12.20	wt%	12.05
AL_00 88 O	47,17 %	±0,14 %	51,17 %	±0,23 %	0,47%	±1,24 %	0,16%	±2,52 %	0,84%	±1,48 %	0,13%	±3,36 %	0,07%	±3,05 %
01	,,	,,	,,	70		,,		, G		,,,		,,		<i>,</i> ,
AL_00	44,13	±0,14	53,50	±0,22	0,42%	±1,29	0,80%	±2,22	0,88%	±1,34	0,22%	±2,47	0,06%	±3,14
88_0_ 02	%	%	%	%		%		%		%		%		%
AL_00	43,99	±0,13	54,09	±0,21	0,44%	±1,2%	0,60%	±2,43	0,61%	±1,55	0,21%	±2,36	0,05%	±3,04
88_O_	%	%	%	%				%		%		%		%
03	40.77	+0.12	57.02	+0.2%	0.28%	+1 27	0.86%	+1.6%	0.70%	+1 29	0.22%	+2.24	0.05%	+2.0%
88_O_	%	±0,15 %	%	±0,270	0,5070	%	0,0070	±1,070	0,7070	%	0,2270	~~,24 %	0,0370	±2,570
04														
AL_00	46,33 ∞	±0,13 %	52,04 ∞	±0,22 ∞	0,49%	±1,13 ∞	0,16%	±1,6%	0,71%	±1,45 ∞	0,18%	±2,6%	0,08%	±3,17 ∞
05	70	70	70	70		70				70				70
AL_00	42,75	±0,13	54,42	±0,21	0,43%	±1,19	0,39%	±2,12	1,74%	±0,92	0,20%	±2,1%	0,07%	±3,31
88_0_ 06	%	%	%	%		%		%		%				%
AL 00	31.81	±0.17	65.69	±0.2%	0.32%	±1.52	0.78%	±2.26	1.14%	±1.13	0.20%	±2.55	0.06%	±3.01
88_O_	%	%	%	-, -	-,	%	-,	%		%	-,	%	-,	%
07	46.60	10.12	51 52	10.22	0.210/	11.40	0.24%	12 60/	1.00%	11.25	0.220/	12.27	0.04%	12.12
88 O	46,60 %	±0,13 %	51,55 %	±0,22 %	0,31%	±1,40 %	0,24%	12,0%	1,06%	±1,25 %	0,23%	±2,37 %	0,04%	±3,13 %
08														
AL_00	41,70	±0,14	56,08	±0,22	0,42%	±1,28	0,58%	±2,42	1%	±1,28	0,14%	±2,99	0,07%	±3,54
88_U_ 09	%	%	%	%		%		%		%		%		%
AL_00	41,88	±0,14	56,03	±0,22	0,32%	±1,47	0,28%	±1,76	1,03%	±1,26	0,36%	±2,03	0,09%	±2,54
88_O_ 10	%	%	%	%		%		%		%		%		%
AL_00	25,50	±0,18	71,57	±0,19	0,54%	±1,14	0,94%	±1,99	1,12%	±1,06	0,23%	±2,56	0,09%	±3,7%
88_R_	%	%	%	%		%		%		%		%		
01	39.40	+0 1/	58.02	+0.21	0.66%	+1%	0 57%	+2 13	1 03%	+1 10	0.24%	+2.2%	0.09%	+2 52
88_R_	%	%	%	%	0,0070	11/0	0,3770	%	1,0370	%	0,2470	±2,270	0,0570	%
02														
AL_00 88 R	27,65 %	±0,18 %	67,13 %	±0,2%	2,59%	±0,53 %	1,12%	±1,9%	1,01%	±1,22 %	0,42%	±2,12 %	0,08%	±3,11 %
03	70	<i>,</i> ,,	70			70				70		70		70
AL_00	28%	±0,18	68,60	±0,2%	1,59%	±0,67	0,29%	±1,38	1,03%	±1,16	0,36%	±2,23	0,12%	±2,63
88_K_ 04		%	%			%		%		%		%		%
AL_00	32,46	±0,16	62,93	±0,21	2,80%	±0,51	0,39%	±1,73	0,73%	±1,43	0,58%	±1,82	0,11%	±2,78
88_R_	%	%	%	%		%		%		%		%		%
05	33 52	+0.15	63 74	+0.19	0.53%	+1 1%	1 17%	+1 73	0.69%	+1 37	0.28%	+2 /15	0.07%	+3 16
88_R_	%	%	%	%	0,5570	±1,170	1,1770	% %	0,0570	×1,57 %	0,2070	±2,∓5 %	0,0770	×3,10 %
06														
AL_00	25,86 ∞	±0,18 %	71,68 %	±0,19 %	0,28%	±1,59 %	1,07%	±1,87 %	0,87%	±1,19 %	0,19%	±2,83 %	0,06%	±3,24 ∞
07	70	70	70	70		70		70		70		70		70
AL_00	20,42	±0,21	77,77	±0,19	0,27%	±1,66	0,33%	±1,74	0,94%	±1,14	0,19%	±2,88	0,08%	±2,72
88_R_ 08	%	%	%	%		%		%		%		%		%
AL_00	37,27	±0,15	59,08	±0,21	1,30%	±0,73	0,41%	±2,04	1,37%	±1,08	0,45%	±2,08	0,11%	±3,22
88_R_	%	%	%	%		%		%		%		%		%
AL 00	37,27	±0,15	59,07	±0,21	1,39%	±0,71	0,44%	±1,65	1,30%	±1,07	0,43%	±2,13	0,11%	±3,11
88_R_	%	%	%	%	,	%	-,	%	,	%	-,	%	-,, 3	%
10	26.72				0.000/		0.500/		0.000/		0.270/		0.000/	
wert	30,72 %		ь0,56 %		0,80%		0,58%		0,99%		0,27%		0,08%	

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	+0.08	wt%	+0.2%	wt%	+0.70	wt%	±2 ⊑2	wt%	+2.08	wt%	+2.44	wt%	±1 F2
AL_01 87 O	77,84 %	±0,08 %	20,89 %	±0,3%	0,68%	±0,79 %	0,08%	±2,52 %	0,13%	±2,98 %	0,17%	±2,44 %	0,21%	±1,52 %
01	70	<i>,</i> ,,	70			<i>,</i> ,,		<i>,</i> ,		70		70		70
AL_01	80,31	±0,08	18,39	±0,31	0,75%	±0,73	0,12%	±2,51	0,11%	±2,75	0,11%	±3,01	0,21%	±1,44
87_O_	%	%	%	%		%		%		%		%		%
	79 38	+0.08	19%	+0.3%	0 94%	+0 64	0 30%	+2 87	0 10%	+2 64	0 14%	+2 91	0 14%	+1 74
87 0	%	±0,08 %	1370	±0,570	0,5470	±0,04 %	0,3070	÷2,67 %	0,1070	±2,04 %	0,1470	%	0,1470	%
03														
AL_01	75,66	±0,08	22,60	±0,28	0,78%	±0,73	0,39%	±2,56	0,21%	±2,69	0,16%	±2,7%	0,20%	±1,53
87_0_	%	%	%	%		%		%		%				%
AL 01	74.17	±0.08	23.85	±0.27	0.74%	±0.73	0.82%	±1.73	0.16%	±2.88	0.09%	±3.1%	0.17%	±1.63
87_O_	%	%	%	%	-,	%	-,/-	%	-,	%	-,		-,,-	%
05														
AL_01	77,88	±0,08	20,78	±0,29	0,87%	±0,67	0,03%	±3,04	0,17%	±2,69	0,10%	±3,01	0,17%	±1,63
87_0_ 06	70	70	70	70		70		70		70		70		70
AL_01	76%	±0,08	22,16	±0,29	0,85%	±0,71	0,57%	±2,18	0,13%	±2,99	0,09%	±3,95	0,19%	±1,61
87_O_		%	%	%		%		%		%		%		%
07	74.20	10.00	25.22	10.20	4.0/	10.00	0 720/	14.60	0.25%	12.54	0.02%	12 60(4.200/	10.00
AL_01 87_0	71,38 %	±0,09 %	25,33 %	±0,28 %	1%	±0,68 %	0,73%	±1,69 %	0,25%	±2,54 %	0,03%	±3,6%	1,28%	±0,66 %
08	70	<i>,</i> ,,	70	70		<i>,</i> ,,		<i>,</i> ,,		70				70
AL_01	76,25	±0,08	21,75	±0,3%	1,01%	±0,66	0,27%	±1,82	0,37%	±2,11	0,17%	±2,62	0,18%	±1,68
87_O_	%	%	%			%		%		%		%		%
09	76.33	+0.08	21 72	+0.3%	0.65%	+0.82	0.62%	+1 5/	0 37%	+7 1%	0 1/1%	+2.96	0.16%	+1 76
87 O	70,33 %	±0,08 %	%	10,376	0,05%	±0,82 %	0,0276	±1,54 %	0,3770	12,170	0,1470	±2,90 %	0,10%	%
10														
AL_01	79,28	±0,08	19,30	±0,31	0,70%	±0,78	0,13%	±2,37	0,29%	±1,57	0,08%	±3,28	0,23%	±1,44
87_R_	%	%	%	%		%		%		%		%		%
AL 01	75.94	±0.08	21.64	±0.3%	1.20%	±0.61	0.36%	±1.25	0.19%	±2.97	0.08%	±3.12	0.60%	±0.93
87_R_	%	%	%			%		%		%		%		%
02														
AL_01	77,38 %	±0,08 %	21,33 %	±0,3%	0,66%	±0,82 %	0,06%	±2,46 ∞	0,15%	±3,33 %	0,15%	±2,62 ∞	0,27%	±1,37 ∞
03	70	70	70			70		70		70		70		70
AL_01	75,12	±0,08	22,99	±0,29	1,01%	±0,66	0,25%	±3,12	0,24%	±2,62	0,13%	±2,75	0,28%	±1,36
87_R_	%	%	%	%		%		%		%		%		%
04	76.07	+0.08	22.25	+0.20	0 74%	+0.77	0 1 6 %	+2 42	0.270/	+2 10/	0.00%	+2 74	0.220/	±1 17
87 R	70,07 %	±0,08 %	22,35 %	±0,29 %	0,7470	±0,77 %	0,10%	±2,42 %	0,3770	12,170	0,0970	±2,74 %	0,2370	±1,47 %
05														
AL_01	74,04	±0,08	23,97	±0,28	1,23%	±0,59	0,16%	±3,49	0,20%	±2,82	0,19%	±2,53	0,20%	±1,62
87_R_	%	%	%	%		%		%		%		%		%
AL 01	78.38	±0.08	20.09	±0.31	0.71%	±0.78	0.12%	±3.94	0.35%	±2.19	0.21%	±2.31	0.15%	±1.82
87_R_	%	%	%	%	-,,-	%	•,,	%	-,	%	-,,	%	-,	%
07														
AL_01	80,22	±0,08	17,47	±0,32	0,99%	±0,64	0,70%	±1,92	0,25%	±2,55	0,14%	±2,59	0,23%	±1,38
87_K_ 08	%	%	%	%		%		%		%		%		%
AL_01	81,15	±0,08	17,28	±0,33	0,78%	±0,74	0,15%	±1,97	0,28%	±2,48	0,16%	±2,5%	0,21%	±1,49
87_R_	%	%	%	%		%		%		%				%
09	04.40	10.00	17 47	10.22	0.020/	10 70	0.400/	12.62	0.2001	10.07	0.400/	12.07	0.2424	14.40
AL_01 87 R	81,19 %	±0,08 %	17,17 %	±0,33 %	0,83%	±0,72 %	0,19%	±3,18 %	0,30%	±2,37 %	0,10%	±2,87 %	0,21%	±1,46 %
10	70	70	70	70		70		70		70		70		70
Mittel	77,20		21,00		0,86%		0,31%		0,23%		0,13%		0,28%	
wert	%		%											

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%	+0.08	wt%	±0.2%	wt%	+0 02	wt%	+2 77	wt%	+2 02	wt%	±2 11	wt%	±1 56
88_0_	19,51 %	±0,08 %	19,40 %	IU,570	0,40%	±0,92 %	0,2070	±2,77 %	U,1270	±2,05 %	U,1170	±3,11 %	0,1070	±1,50 %
01														
AL_01	78,38	±0,09	20,55	±0,32	0,64%	±0,87	0,01%	±2,65	0,16%	±3,4%	0,10%	±3,12	0,16%	±1,86
88_U_ 02	%	%	%	%		%		%				%		%
AL_01	71,68	±0,09	26,04	±0,28	0,62%	±0,89	0,93%	±1,32	0,34%	±2,27	0,23%	±2,42	0,16%	±1,93
88_O_	%	%	%	%		%		%		%		%		%
03 AI 01	67,70	+0.1%	30,80	+0.27	0 57%	+0.97	0.08%	+2.73	0 37%	+2.2%	0 38%	+1.9%	0.09%	+2.71
88_0_	%	±0,±/0	%	%	0,0770	%	0,0070	%	0,0770	- <i>L</i> , <i>L</i> ,v	0,0070	±1,270	0,0070	%
04														
AL_01	73,70 ≪	±0,08 %	24,40 ∞	±0,28 %	0,89%	±0,7%	0,19%	±2,33 %	0,32%	±2,24 ∞	0,27%	±2,11 %	0,24%	±1,48 %
05	/0	/0	/0	/0				/0		/0		/0		70
AL_01	74,49	±0,09	24,14	±0,29	0,62%	±0,87	0,13%	±2,31	0,26%	±2,57	0,19%	±2,49	0,16%	±1,84
88_0_ 06	%	%	%	%		%		%		%		%		%
AL 01	73.14	±0.09	24.39	±0.29	0.92%	±0.73	0.78%	±1.97	0.36%	±2.19	0.26%	±2.26	0.15%	±1.96
88_O_	%	%	%	%	0,0	%	0,1 2.1	%	0,02.2	%	0,2010	%	0,2010	%
07	74.70		22.04		0.040/		0.120/	12.24	<u> </u>		0.07%	12.24	2 1 40/	12.00
AL_01 88 O	/4,/3 %	±0,09 %	23,91 %	±0,3%	0,61%	±0,89 %	0,12%	±2,31 %	0,22%	±2,82 %	0,27%	±2,24 %	0,14%	±2,06 %
08	<i>,,</i>	<i>,,,</i>	<i>,</i> ,			<i>,</i> ,,		<i>,</i> ,		<i>,</i> ,,		/0		<i>,</i> ,,
AL_01	74,32	±0,09	23,20	±0,3%	0,63%	±0,87	0,60%	±2,23	0,57%	±1,75	0,20%	±2,58	0,48%	±1,08
88_U_ 09	%	%	%			%		%		%		%		%
AL_01	74,36	±0,09	23,02	±0,3%	0,57%	±0,91	0,88%	±1,49	0,49%	±1,88	0,20%	±2,53	0,47%	±1,09
88_O_	%	%	%			%		%		%		%		%
10	72 80	+0.09	21 72	+0.20	0.62%	+0.87	0.11%	+2.46	0.31%	+2 32	0.22%	+2.28	0.13%	+2.00
88_R_	15,05 %	±0,05 %	24,72 %	±0,29 %	0,0270	±0,87 %	0,11/0	±3,40 %	0,51/0	±2,32 %	0,2270	±2,20 %	0,1370	±2,05 %
01														
AL_01	68,93 %	±0,1%	29,24 ∞	±0,28 ∞	0,89%	±0,77 ∞	0,27%	±2,69 ∞	0,29%	±2,49 ∞	0,26%	±2,14 ∞	0,13%	±2,24 ∞∕
00_N_ 02	70		70	70		70		70		70		70		70
AL_01	73,17	±0,09	24,38	±0,29	0,93%	±0,73	0,64%	±1,52	0,40%	±2,11	0,22%	±2,13	0,27%	±1,47
88_R_	%	%	%	%		%		%		%		%		%
AL 01	73,67	±0,09	24,05	±0,3%	0.95%	±0,72	0.45%	±1,97	0.37%	±2,18	0.36%	±1,96	0.14%	±2.03
88_R_	%	%	%	/	-,	%	-,	%	-,- :	%	-,	%	-,	%
04	75 22		22.27	.0.20	0.50%		0.00%	12.00	0.00%	12.00	0.20%	12.00	0.120/	12 10/
AL_01 88 R	75,32 %	±0,08 %	23,37 %	±0,29 %	0,59%	±0,87 %	0,08%	±2,66 %	0,23%	±2,66 %	0,29%	±2,09 %	0,12%	±2,1%
05								<i>,</i> ,,						
AL_01	75,48	±0,08	23,14	±0,28	0,65%	±0,8%	0,11%	±2,14	0,25%	±2,48	0,26%	±2,13	0,10%	±2,16
88_K_ 06	%	%	%	%				%		%		%		%
AL_01	70,99	±0,09	26,63	±0,28	0,97%	±0,7%	0,75%	±1,99	0,28%	±2,48	0,31%	±2,05	0,08%	±2,81
88_R_	%	%	%	%				%		%		%		%
07	7/ 12	+0.09	24 52	+0.29	0.60%	+0.88	0.13%	+2 35	0.20%	+7 41	0.19%	+2 59	0.15%	+1 88
88_R_	74,12 %	±0,05 %	24,52 %	±0,25 %	0,0070	±0,85 %	0,1370	±2,35 %	0,2370	±∠,+⊥ %	0,1970	±2,35 %	0,1370	±1,00 %
08														
AL_01	72,60	±0,09	25,62	±0,28	0,88%	±0,73	0,11%	±3,33	0,41%	±2,04	0,27%	±2,18	0,11%	±2,3%
88_K_ 09	%	%	%	%		%		%		%		%		
AL_01	72,34	±0,09	25,13	±0,28	1,20%	±0,63	0,61%	±2,2%	0,31%	±2,32	0,30%	±2,12	0,12%	±2,16
88_R_	%	%	%	%		%				%		%		%
10 Mittel	73 62		24 54		0 74%		0 36%		0 32%		0.24%		0 18%	
wert	%		%		0,7470		0,0070		0,5270		0,2470		0,1070	

Messu	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ng	wt%		wt%	10.24	wt%		wt%		wt%		wt%		wt%	
AL_U1 89 0	54,96 %	±0,12 %	42,85 %	±0,24 %	0,49%	±1,12 %	0,83%	±2,08 %	0,43%	±2,02 %	0,26%	±2,21 %	0,18%	±2,23 %
01	/0	/0	/0	/0		/0		/0		/0		/0		70
AL_01	59,38	±0,11	38,97	±0,25	0,60%	±1%	0,14%	±1,6%	0,39%	±2,17	0,34%	±2,02	0,18%	±2,19
89_O_	%	%	%	%						%		%		%
02 AL 01	51 38	+0 12	45.62	+0.23	በ 58%	+1 03	1 56%	+1 51	0 20%	+2 37	0 37%	+1 94	0 19%	+2 23
89_0_	%	±0,±2 %	43,02 %	%	0,0070	×1,05 %	1,3070	±1,51 %	0,3070	<u>+</u> 2,37 %	0,3770	±±,5∓ %	0,1370	±2,23 %
03														
AL_01	65,61	±0,1%	32,10	±0,27	0,55%	±1%	0,97%	±1,54	0,32%	±2,39	0,25%	±2,36	0,21%	±1,89
89_O_	%		%	%				%		%		%		%
AL 01	52.26	±0.13	44.45	±0.24	0.45%	±1.23	1.81%	±1.47	0.44%	±2.04	0.37%	±1.95	0.22%	±2.17
89_O_	%	%	%	%	0,1211	%	2,02	%	•,•	%	0,0111	%	0,22	%
05														
AL_01	52,72	±0,12	45,27	±0,24	0,65%	±1%	0,48%	±1,8%	0,33%	±2,33	0,34%	±1,76	0,21%	±2,13
89_U_ 06	%	%	%	%						%		%		%
AL_01	47,42	±0,13	51,26	±0,23	0,33%	±1,43	0,25%	±1,93	0,34%	±2,28	0,24%	±2,36	0,16%	±2,57
89_O_	%	%	%	%		%	•	%		%		%		%
07							- 700/							
AL_01	55,52 %	±0,11	41,95 %	±0,23	0,68%	±0,92	0,70%	±1,82	0,50%	±1,81	0,27%	±2,15	0,37%	±1,5%
08	70	70	70	70		70		70		70		70		l
AL_01	50,03	±0,13	48,64	±0,23	0,27%	±1,58	0,36%	±2,3%	0,25%	±2,66	0,30%	±2,15	0,15%	±2,66
89_O_	%	%	%	%		%				%		%		%
09	40.74	.0.12	40.10		0.10%		0.070/	11.04	0.210/	12.20	0.210/	12.00	0.100/	12.26
89 O	49,74 %	±0,13 %	48,18 %	±0,23 %	0,40%	±1,29 %	0,87%	±1,84 %	0,31%	±2,39 %	0,31%	±2,09 %	0,19%	±2,30 %
10	<i>,</i> ,,	<i>,</i> ,,	<i>,</i> ,,	<i>,</i> ,,		<i>,</i> ,,		<i>,</i> 0		/0		/0		<i>,</i> ,,
AL_01	64,45	±0,1%	32,75	±0,26	0,64%	±0,91	0,97%	±1,82	0,76%	±1,5%	0,26%	±2,25	0,17%	±2,05
89_R_	%		%	%		%		%				%		%
	50.67	+0.13	47.93	+0.23	0.25%	+1.62	0 12%	+3.25	0.63%	+1.66	0 24%	+2.35	0.16%	+2.51
89_R_	%	%	%	%	0,2370	%	0,1270	÷3,23 %	0,0070	÷1,00 %	0,2470	÷2,55 %	0,1070	÷2,5± %
02														
AL_01	54,83	±0,12	42,17	±0,24	0,28%	±1,49	1,41%	±1,61	0,84%	±1,45	0,32%	±1,92	0,15%	±2,45
89_K_	%	%	%	%		%		%		%		%		%
AL_01	63,02	±0,1%	35,45	±0,26	0,41%	±1,16	0,01%	±3,15	0,67%	±1,63	0,30%	±2,12	0,14%	±2,37
89_R_	%		%	%		%	•	%		%		%		%
04	-0.64			10.25	- + 60/		- 700/	12.10		1.20		1.05		10.54
AL_01 20 R	58,61 %	±0,11 «	38,77 %	±0,25 %	0,46%	±1,15 %	0,76%	±2,19 %	0,98%	±1,36 %	0,28%	±1,95 «	0,14%	±2,54 %
05	70	70	70	/0		/0		70		/0		70		/0
AL_01	55,57	±0,12	42,97	±0,24	0,31%	±1,43	0,15%	±3,87	0,58%	±1,77	0,31%	±2,13	0,12%	±2,81
89_R_	%	%	%	%		%		%		%		%		%
06	F7 70	+0.10	20.41	+0.25	0.949/	+0.07	1 26%	±1 CE	0.200/	+2 50	0.200/	+2 20/	0.120/	±0 70
89 R	57,70 %	±0,12 %	39,41 %	±0,25 %	U,8470	±0,87 %	1,30%	±1,05 %	U,2870	±2,59 %	U,2870	±2,370	U,1270	±2,12 %
07														
AL_01	53,06	±0,12	45,39	±0,23	0,45%	±1,18	0,38%	±2,78	0,33%	±2,28	0,24%	±2,39	0,14%	±2,59
89_R_	%	%	%	%		%		%		%		%		%
	61 84	+0 11	36.04	+0.26	1 03%	+0 75	0.10%	+2 13	0 54%	+1 82	0.31%	+2 12	0 13%	+2 46
89 R_	%	<u>+</u> 0,++ %	30,0 4 %	%	1,0370	%	0,1070	<u>+</u> 2,13 %	0,0+70	±1,02 %	0,31/0	±∠,±∠ %	0,1370	±2,+0 %
09								-		-				-
AL_01	62,38	±0,11	36,05	±0,26	0,52%	±1,06	0,23%	±2,24	0,44%	±2,01	0,25%	±2,34	0,13%	±2,51
89_R_	%	%	%	%		%		%		%		%		%
Mittel	56.06		41.81		0.51%		0.67%		0.48%		0.29%		0.17%	
wert	%		%		0,01/0		0,0170		0)10/0		0)2070		0)2770	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
ALSK_0	2,69 %	±0,49 %	94,90 %	±0,14 ∞	0,04 %	±3,78 ∞	0,92 %	±1,71 ∞	0,91 %	±0,84 ∞	0,48 ∞	±1,41 ∞	0,05 %	±3,17 %
047_0_ 01	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	1,80	±0,62	96,64	±0,14	0,02	±5,04	0,20	±1,33	0,83	±0,89	0,47	±1,46	0,04	±3,21
047_O_ 02	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	2.60	±0.52	95.56	±0.14	0.02	±4.86	0.45	±1.95	0.81	±0.95	0.49	±1.45	0.07	±2.95
047_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
03														
ALSK_0	3,14 %	±0,48 %	95,25 %	±0,15 ∞	0,03 %	±4,23 ∞	0,20 %	±1,84 ∞	0,77 ∞∕	±1%	0,55 ∞∕	±1,4 ∞∕	0,06 %	±3,17
047_0_	70	70	70	70	70	70	70	70	70		70	70	70	70
ALSK_0	3,30	±0,46	94,48	±0,14	0,04	±3,98	0,70	±0,88	0,93	±0,88	0,51	±1,42	0,05	±3,21
047_O_ 05	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	3,83	±0,44	94,40	±0,15	0,04	±4,08	0,69	±2,13	0,58	±1,14	0,42	±1,63	0,04	±3,27
047_0_ 06	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	2.13	±0.56	94.72	±0.14	0.04	±3.66	1.92	±1.2	0.67	±0.99	0.48	±1.4	0.03	±3.3
047_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
07		10.50	00.00					1170	0.64	. 40/				
ALSK_0	2,32 %	±0,53 %	96,08 %	±0,14 %	0,03 %	±4,19 %	0,44 %	±1,76 %	0,64 %	±1%	0,41 %	±1,49 %	0,08 %	±3,01 %
04,_0_	70	70	70	70	70	70	70	70	70		70	70	70	70
ALSK_0	3,55	±0,45	94,56	±0,14	0,04	±3,99	0,71	±1,3	0,61	±1,06	0,47	±1,48	0,06	±2,94
047_O_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	3,54	±0,45	94,79	±0,14	0,04	±3,9	0,47	±1,68	0,62	±1,05	0,47	±1,5	0,06	±3,56
047_0_ 10	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	2,64	±0,52	95,31	±0,14	0,03	±4,2	1,04	±1,53	0,56	±1,09	0,39	±1,51	0,03	±3,54
047_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	2.59	+0.53	95.59	+0.14	0.03	+3.9	0.67	+1.68	0.65	+0.77	0.42	+1.53	0.05	+3.44
047_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
02														
ALSK_0	2,39	±0,55	95,37 %	±0,14	0,03 %	±4,26	1,34	±0,97	0,45 %	±1,22	0,36	±1,7	0,06 %	±2,97
047_K_ 03	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	2,90	±0,51	95,99	±0,15	0,03	±4,21	0,05	±1,53	0,55	±1,17	0,45	±1,57	0,03	±3,2
047_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	3.41	+0.46	94.47	+0.14	0.05	+3.51	1.18	+1.32	0.51	+1.19	0.32	+1.61	0.06	+3.4
047_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
05														
ALSK_0	3,49 %	±0,45	95,68 %	±0,14 ∞∕	0,06 %	±3,08 ∞	0,01 %	±1,06 ∞	0,48 %	±1,2	0,24 ∞∕	±1,95 ∞	0,05 %	±3,22
047_K_ 06	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	1,71	±0,65	96,60	±0,15	0,04	±3,94	0,09	±1,47	1,07	±0,83	0,44	±1,54	0,06	±3,11
047_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	2 5 5	+0.54	05 00	+0.15	0.04	+4.00	0.41	+2.00	0.57	+1.09	0.28	+1 62	0.06	+2.08
047 R	2,55 %	±0,54 %	95,99 %	±0,15 %	0,04 %	14,09 %	0,41 %	±2,09 %	0,57 %	±1,08 %	0,58 %	±1,05 %	0,00 %	13,08 %
08														
ALSK_0	3,74	±0,44	95,14	±0,14	0,03	±4,49	0,20	±1,13	0,43	±1,36	0,41	±1,59	0,05	±3,06
047_R_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	3,74	±0,44	94,99	±0,14	0,05	±3,59	0,31	±1,19	0,43	±1,31	0,42	±1,58	0,06	±3,04
047_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Mittelw	2,90		95.33		0.04		0.60		0.65		0.43		0.05	
ert	%		%		%		%		%		%		%	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g ALSK O	wt%	+0.15	wt%	+0.19	wt%	+1 61	wt%	+2.44	wt%	±1 F2	wt%	+2.22	wt%	+2.17
048_0_ 01	32,91 %	±0,15 %	65,82 %	±0,18 %	0,23 %	±1,61 %	0,15 %	±3,44 %	0,51 %	±1,52 %	0,30 %	±2,22 %	0,07 %	±3,17 %
ALSK_0 048_0_	36,90 %	±0,15 %	61,83 %	±0,21 %	0,22 %	±1,82 %	0,11 %	±6,1 %	0,61 %	±1,63 %	0,26 %	±2,27 %	0,09 %	±3,3 %
02 ALSK_0	12,56	±0,26	85,49	±0,17	0,07	±2,19	1,30	±1,69	0,44	±1,56	0,07	±2,2	0,06	±3,15
048_O_ 03	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0 048_O_ 04	22,40 %	±0,19 %	75,68 %	±0,18 %	0,15 %	±2,15 %	0,75 %	±2,22 %	0,56 %	±1,52 %	0,39 %	±2,02 %	0,07 %	±2,96 %
ALSK_0 048_0_	16,62 %	±0,23 %	81,94 %	±0,18 %	0,09 %	±2,84 %	0,27 %	±3,75 %	0,75 %	±1,25 %	0,27 %	±2,39 %	0,05 %	±2,99 %
ALSK_0 048_0_	20,12 %	±0,2 %	77,61 %	±0,17 %	0,16 %	±2,04 %	1,10 %	±1,79 %	0,67 %	±1,26 %	0,29 %	±2,28 %	0,06 %	±2,7 %
06 ALSK_0 048_0	27,82	±0,18 %	70,29 %	±0,19 %	0,14 %	±2,26	0,58 %	±2,57 %	0,76 %	±1,33 %	0,34 %	±2,28 %	0,07 %	±2,79 %
048_0_ 07	37 71	+0.13	60.87	+0.18	0.20	+1 65	0.42	+2 68	0.45	+1 65	0.29	+1 92	0.06	+3 18
048_0_ 08	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	25,08	±0,18	73,86	±0,18	0,18	±1,88	0,01	±5,06	0,56	±1,39	0,26	±2,42	0,06	±3,01
048_O_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0 048_O_ 10	24,81 %	±0,18 %	73,40 %	±0,18 %	0,27 %	±1,53 %	0,63 %	±2,31 %	0,60 %	±1,44 %	0,26 %	±2,42 %	0,04 %	±3,15 %
ALSK_0 048_R_	33,87 %	±0,14 %	64,67 %	±0,18 %	0,17 %	±1,83 %	0,61 %	±2,25 %	0,34 %	±1,9 %	0,29 %	±2,11 %	0,05 %	±2,69 %
01 ALSK_0 048 R	40,34 %	±0,14 %	58,35 %	±0,21 %	0,24 %	±1,71 %	0,37 %	±3,22 %	0,34 %	±2,15 %	0,30 %	±1,95 %	0,06	±3,1 %
02					,.	,		,.	,.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,.	,.		,.
ALSK_0 048_R_ 03	36,58 %	±0,16 %	61,65 %	±0,21 %	0,20 %	±1,9 %	0,81 %	±2,22 %	0,38 %	±1,43 %	0,34 %	±2,25 %	0,04 %	±2,65 %
ALSK_0 048_R_	37,16 %	±0,15 %	61,48 %	±0,2 %	0,22 %	±1,75 %	0,19 %	±4,34 %	0,58 %	±1,6 %	0,31 %	±2,08 %	0,05 %	±3,05 %
ALSK_0 048_R_ 05	33,93 %	±0,14 %	63,98 %	±0,18 %	0,27 %	±1,46 %	0,92 %	±1,84 %	0,50 %	±1,58 %	0,33 %	±2,13 %	0,07 %	±2,69 %
ALSK_0 048_R_ 06	32,41 %	±0,15 %	66,16 %	±0,19 %	0,34 %	±1,35 %	0,37 %	±3,04 %	0,40 %	±1,79 %	0,26 %	±2,49 %	0,06 %	±2,77 %
ALSK_0 048_R_ 07	42,68 %	±0,13 %	56,15 %	±0,2 %	0,23 %	±1,6 %	0,30 %	±3,3 %	0,36 %	±1,99 %	0,24 %	±2,15 %	0,05 %	±2,76 %
ALSK_0 048_R_ 08	28,99 %	±0,17 %	69,67 %	±0,19 %	0,22 %	±1,75 %	0,41 %	±3%	0,36 %	±1,92 %	0,30 %	±2,39 %	0,05 %	±3,35 %
ALSK_0 048_R_	19,80 %	±0,21 %	78,72 %	±0,18 %	0,10 %	±2,67 %	0,73 %	±2,27 %	0,32 %	±2,01 %	0,28 %	±2,38 %	0,04 %	±2,39 %
ALSK_0 048_R_	20,05 %	±0,21 %	78,64 %	±0,18 %	0,12 %	±2,43 %	0,58 %	±2,55 %	0,26 %	±1,98 %	0,31 %	±2,28 %	0,04 %	±3,52 %
10 Mittelw ert	29,14 %		69,31 %		0,19 %		0,53 %		0,49 %		0,28 %		0,06 %	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g	wt%	10.11	wt%	10.22	wt%		wt%	11.0	wt%	12.20	wt%	12.24	wt%	12.02
ALSK_0 058_0_ 01	55,51 %	±0,11 %	42,37 %	±0,23 %	0,45 %	±1,14 %	1,04 %	±1,8 %	0,29 %	±2,39 %	0,25 %	±2,24 %	0,10 %	±2,83 %
ALSK_0	52,99 %	±0,11 %	43,79 %	±0,22 %	2,38 %	±0,48 %	0,24 %	±2,37 %	0,25 %	±2,48 %	0,24 %	±2,22 %	0,10 %	±2,34 %
02	,,,	,.	,.	,.	,,,	,,,	,,,	,,,	,,,	,,,	,,,	,,,	,,,	,,,
ALSK_0	44,66	±0,13	53,63	±0,22	0,19	±1,86	0,70	±2,3	0,37	±2,07	0,33	±2,11	0,13	±2,87
058_O_ 03	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	52,06	±0,14	45,96	±0,26	0,48	±1,28	0,86	±2,29	0,27	±2,64	0,28	±2,43	0,10	±3,53
058_O_ 04	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	54,73	±0,11	43,95	±0,22	0,53	±0,99	0,18	±2,87	0,38	±1,97	0,13	±2,94	0,10	±2,74
058_O_ 05	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	50,55	±0,11	48,23	±0,21	0,35	±1,24	0,23	±2,12	0,29	±2,23	0,24	±2,18	0,11	±2,81
058_O_ 06	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	46,93	±0,12	51,32	±0,21	0,42	±1,18	0,64	±2,26	0,26	±2,32	0,32	±1,99	0,11	±2,88
058_O_ 07	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	55,96	±0,11	41,99	±0,23	0,83	±0,82	0,42	±2,8	0,36	±2,11	0,31	±2,51	0,13	±2,47
058_O_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
08	EE 7E	+0 11	41.24	+0.22	0.91	+0.91	1.60	±1 20	0.25	+2 42	0.25	+2 17	0.10	±2 01
058 O	55,75 %	±0,11 %	41,24 %	±0,25 %	0,81 %	10,81 %	1,80 %	±1,59 %	0,25 %	±2,45 %	0,25 %	±2,17 %	0,10 %	12,01 %
09														
ALSK_0	56,40	±0,11	41,96	±0,23	0,54	±1%	0,47	±2,59	0,27	±2,39	0,24	±2,24	0,11	±2,65
058_0_ 10	%	%	%	%	%		%	%	%	%	%	%	%	%
ALSK_0	57,32	±0,11	41,49	±0,23	0,46	±1,07	0,02	±4,69	0,30	±2,27	0,31	±1,7	0,10	±2,73
058_R_ 01	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	42,22	±0,14	55,51	±0,21	0,31	±1,45	1,06	±1,84	0,45	±1,86	0,36	±1,82	0,09	±2,85
058_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	45 24	+0.13	53 47	+0.21	0.27	+1 51	0.23	+3.08	0 39	+2%	0.31	+1 92	0.10	+3.05
058_R_ 03	%	%	%	%	%	%	%	%	%		%	%	%	%
ALSK_0	33,12	±0,17	64,91	±0,21	0,21	±1,89	0,74	±2,35	0,49	±1,82	0,44	±2,11	0,10	±3,34
058_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	12 74	+0.12	55 65	+0.2	0.27	+1 5	0 2 2	+2.84	0.52	+1 65	0 27	+1 99	0.12	+2 97
058 R	42,74 %	±0,13 %	33,03 %	±0,2 %	%	*1,5 %	0,32 %	±2,84 %	%	±1,05 %	%	±1,88 %	0,12 %	12,87 %
05														
ALSK_0	32,30	±0,16	65,93	±0,19	0,19	±1,87	0,79	±2,13	0,28	±2,05	0,42	±2,03	0,09	±2,88
058_R_ 06	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	39,31	±0,14	59,33	±0,2	0,31	±1,42	0,50	±2,65	0,20	±2,62	0,28	±2,55	0,07	±2,64
058_R_ 07	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	50%	±0,11	48,26	±0,21	0,45	±1,09	0,41	±2,09	0,32	±2,09	0,43	±1,72	0,13	±2,56
058_R_ 08		%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0 058_R_	31,21 %	±0,16 %	66,19 %	±0,19 %	0,20 %	±1,84 %	1,29 %	±1,68 %	0,55 %	±1,56 %	0,43 %	±2,01 %	0,13 %	±3,11 %
09														
ALSK_0	31,21	±0,16	67,28 %	±0,19	0,20	±1,84	0,22	±3,1	0,58	±1,57	0,38	±2,15	0,13	±2,93
058_R_ 10	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Mittelw	46,51		51,62		0,49		0,60		0,35		0,32		0,11	
ert	%		%		%		%		%		%		%	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
ALSK_0	56,63 %	±0,11 ∞	41,02 %	±0,24 ∞	0,62 %	±0,97 ∞	0,94 %	±1,9 ∞	0,37 %	±2,14 ∞	0,29 %	±2,09 ∞	0,13 %	±2,53 ∞
03 <u>9_0_</u> 01	70	70	70	70	70	70	70	70	70	70	70	70	70	78
ALSK_0	58,53	±0,11	38,55	±0,25	0,94	±0,81	1,24	±1,71	0,24	±2,74	0,38	±1,81	0,11	±2,79
059_O_ 02	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	67,86	±0,1	30,20	±0,28	1,02	±0,73	0,19	±4,22	0,18	±3,07	0,43	±1,82	0,11	±2,55
059_O_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
03														
ALSK_0	49,76 ∞	±0,13 ∞	48,28 ∞∕	±0,23 ∞∕	0,25 %	±1,61 ∞	0,82 ∞∕	±2,11 ∞	0,24 ∞∕	±2,65 ∞	0,53 %	±1,97 ∞	0,12 %	±2,86 ∞
039_0_	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	59,98	±0,11	38,45	±0,24	0,43	±1,14	0,55	±2,43	0,16	±3,26	0,34	±1,88	0,09	±2,94
059_O_ 05	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	57,68	±0,11	41,07	±0,24	0,38	±1,26	0,27	±3,64	0,17	±3,21	0,30	±1,88	0,13	±2,58
059_O_ 06	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	51.94	±0.12	45.30	±0.23	0.69	±0.94	1.44	±1.55	0.15	±3.23	0.35	±1.84	0.13	±2.69
059_O_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
07														
ALSK_0	56,81 %	±0,11 %	40,49 %	±0,23 ∞	0,86 %	±0,79 ∞	1,11 %	±1,68 ∞	0,24 ∞	±2,38 ∞	0,40 %	±1,51 ∞	0,09 %	±2,41 %
035_0_	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	58,33	±0,11	40,20	±0,24	0,49	±1,09	0,36	±3,06	0,22	±2,77	0,29	±2,11	0,11	±2,7
059_O_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	58,42	±0,11	40,28	±0,24	0,38	±1,23	0,24	±3,76	0,22	±2,76	0,34	±1,94	0,11	±2,69
059_O_ 10	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	55,87	±0,12	42,72	±0,25	0,41	±1,26	0,23	±4,04	0,23	±2,86	0,45	±1,81	0,09	±3,2
059_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	57,19	+0.12	41.32	+0.25	0.38	+1.3	0.38	+2.88	0.25	+2.71	0.40	+1.89	0.08	+3.35
059_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
02														
ALSK_0	63 <i>,</i> 67	±0,11	35,27	±0,26	0,34	±1,31	0,19	±3,6	0,11	±3,84	0,33	±1,92	0,09	±2,9
059 <u>k</u> 03	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	66,04	±0,1	32,59	±0,26	0,52	±1%	0,35	±2,99	0,17	±0,86	0,24	±2,3	0,09	±2,68
059_R_	%	%	%	%	%		%	%	%	%	%	%	%	%
	65 20	+0.1	32.88	+0.27	0.52	+1.05	0.70	+2 21	0.22	+2 89	0.38	+1 68	0.10	+2 72
059_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
05														
ALSK_0	58%	±0,11	38,40	±0,25	0,43	±1,18	2,40	±1,21	0,21	±2,89	0,46	±1,56	0,11	±2,8
059_K_ 06		%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	65,99	±0,1	30,41	±0,29	2,78	±0,46	0,22	±3,76	0,21	±3,07	0,30	±2,22	0,09	±2,94
059_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
07	62.60	10.1	24.25	10.20	0.42	14.42	0.00	14.05	0.24	12.00	0.44	14 70	0.10	10.74
ALSK_0 059 R	63,60 %	±0,1 %	34,35 %	±0,26 %	0,43 %	±1,12 %	0,86 %	±1,95 %	0,24 %	±2,66 %	0,41 %	±1,78 %	0,10 %	±2,74 %
085 <u>-</u> 1	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	62,38	±0,11	36,37	±0,27	0,44	±1,2	0,23	±4,04	0,18	±2,29	0,30	±2,26	0,10	±2,87
059_R_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	62,18	±0,11	36,23	±0,27	0,86	±0,86	0,16	±4,07	0,14	±3,78	0,34	±2,12	0,09	±3,16
059_R_ 10	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Mittelw	59.80		38,22		0.66		0.64		0.21		0.36		0.10	
ert	%		%		%		%		%		%		%	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g	wt%	10.12	wt%	10.40	wt%	14.22	wt%	14.00	wt%	14.40	wt%	12.12	wt%	14.05
ALSK_0 060_0_ 01	37,69 %	±0,13 %	60,23 %	±0,18 %	0,37 %	±1,22 %	0,76 %	±1,98 %	0,45 %	±1,48 %	0,23 %	±2,13 %	0,27 %	±1,85 %
ALSK_0 060_0_	33,28 %	±0,15 %	64,78 %	±0,18 %	0,18 %	±1,84 %	1,14 %	±1,68 %	0,26 %	±1,98 %	0,17 %	±2,42 %	0,19 %	±2,39 %
02	50.00				0.74			11.00					0.46	12.10
ALSK_0 060_0_	58,23 %	±0,11 %	39,40 %	±0,23 %	0,71 %	±0,87 %	1,10 %	±1,69 %	0,29 %	±2,09 %	0,11 %	±3,37 %	0,16 %	±2,18 %
	43%	+0.13	55 18	+0.2	0.25	+1 51	0.87	+1 93	0 34	+1 92	0.21	+2 27	0.15	+2 5
060_0_ 04	1370	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	46,46	±0,12	51,61	±0,2	0,30	±1,34	0,66	±2,16	0,51	±1,65	0,27	±2,08	0,20	±2,1
060_O_ 05	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	22,82	±0,19	75,47 %	±0,18	0,74 %	±0,95	0,18 %	±3,77	0,36 %	±1,71	0,32 %	±2,21	0,11	±2,79
060_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	32,03	±0,15	66,59	±0,18	0,19	±1,74	0,15	±2,15	0,48	±1,59	0,43	±1,78	0,14	±2,74
060_O_ 07	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	24,76	±0,17	73,45	±0,17	0,18	±1,79	0,59	±1,79	0,51	±1,44	0,32	±2,04	0,17	±2,54
060_O_ 08	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	35,21	±0,14	63,58	±0,19	0,23	±1,62	0,01	±3,14	0,51	±1,61	0,34	±2,17	0,12	±2,9
060_O_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	35,04	±0,14	62,82	±0,19	0,29	±1,42	1,13	±1,69	0,48	±1,64	0,12	±2,34	0,12	±2,81
060_O_ 10	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	44,67	±0,12	54,07	±0,2	0,20	±1,68	0,11	±2,35	0,45	±1,77	0,35	±1,89	0,15	±2,53
060_R_ 01	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	23,86	±0,18	74,71	±0,18	0,18	±1,89	0,61	±2,4	0,25	±2,04	0,26	±2,14	0,14	±3,03
060_R_ 02	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	38,57	±0,13	60,44	±0,19	0,20	±1,67	0,08	±2,71	0,36	±1,89	0,24	±2,02	0,11	±2,72
060_R_ 03	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	20,66	±0,2	78,41	±0,17	0,15	±2,12	0,22	±2,62	0,16	±2,13	0,27	±2,39	0,14	±2,71
060 <u>k</u> 04	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	34,84	±0,14	63,34	±0,18	0,23	±1,58	0,70	±2,12	0,49	±1,61	0,32	±2,01	0,09	±3,24
060_R_ 05	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	24,19	±0,17	74,07	±0,17	0,13	±2,08	0,96	±1,78	0,23	±2,06	0,25	±2,3	0,16	±2,57
060_R_ 06	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	53,20	±0,11	45,54	±0,21	0,32	±1,29	0,19	±1,97	0,38	±1,97	0,24	±2,16	0,14	±2,36
060_R_ 07	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0 060 R	33,01 %	±0,14 %	65,41 %	±0,18 %	0,24 %	±1,52 %	0,38 %	±1,24 %	0,36 %	±1,77 %	0,31 %	±2,04 %	0,29 %	±1,84 %
08	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0 060_R_ 09	43,48 %	±0,13 %	55,03 %	±0,21 %	0,29 %	±1,46 %	0,19 %	±3,34 %	0,62 %	±1,55 %	0,30 %	±1,94 %	0,09 %	±3,38 %
ALSK_0	43,39	±0,13	55,03	±0,21	0,21	±1,7	0,29	±3%	0,60	±1,57	0,39	±1,94	0,10	±3,12
060_R_ 10	%	%	%	%	%	%	%		%	%	%	%	%	%
Mittelw	36,42		61,96		0,28		0,52		0,40		0,27		0,15	
ert	%		%		%		%		%		%		%	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
ALSK_0 169_0_	78,75 %	±0,08 %	19,05 %	±0,31 %	1,61 %	±0,51 %	0,17 %	±2,55 %	0,15 %	±3,3 %	0,15 %	±2,53 %	0,12 %	±1,98 %
	78 20	+0.08	10.24	+0.22	1 / 2	+0 55	0.62	+2.1	0.20	+2 62	0.09	+2.86	0.11	+2.08
169 O	78,50 %	±0,08 %	19,24 %	±0,52 %	1,45 %	10,55 %	0,03 %	±2,1 %	0,20 %	±2,02 %	0,09 %	±2,80 %	0,11 %	±2,08 %
02	-	-	-	-	-			-		-	-			-
ALSK_0	80,12	±0,08	17,44	±0,34	1,02	±0,66	1,02	±1,68	0,18	±3,14	0,07	±3,53	0,15	±1,82
169_0_ 03	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	79.18	±0.08	19.59	±0.31	0.48	±0.93	0.39	±2.61	0.17	±2.31	0.09	±2.39	0.11	±2.03
169_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
04														
ALSK_0	79,48 %	±0,08 %	19,46 %	±0,31 %	0,50 %	±0,92 %	0,18 %	±3,42 %	0,20 %	±2,9 %	0,02 %	±3,34 %	0,16 %	±1,7 %
05	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	74,16	±0,09	23,79	±0,29	0,87	±0,72	0,78	±1,66	0,25	±2,56	0,05	±2,82	0,10	±2,27
169_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
06	74.86	+0.09	22.20	+0.2	1.00	+0.67	0.30	+2 21	0.21	+2 05	0.25	+2.24	0.09	+2.40
169 O	74,80 %	±0,09 %	23,20 %	±0,3 %	1,09 %	±0,07 %	0,30 %	12,21 %	%	12,95 %	%	12,34 %	%	±2,49 %
07														
ALSK_0	76%	±0,09	21,41	±0,31	1,26	±0,61	0,88	±1,85	0,22	±2,88	0,14	±3,13	0,09	±2,48
169_0_ 08		%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	79,21	±0,08	19,35	±0,31	0,58	±0,84	0,40	±2,57	0,20	±2,81	0,08	±3,09	0,16	±1,7
169_O_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
09	70.00		40.00			10.50	~		0.05				0.47	
ALSK_0	78,38 %	±0,08 %	19,22 %	±0,31 %	1,45 %	±0,53 %	0,44 %	±2,44 %	0,25 %	±1,79 %	0,10 %	±2,55 %	0,17 %	±1,67 %
10	<i>,</i> ,,	70	70	70	<i>,</i> ,,	70	70	70	70	70	70	70	<i>,</i> ,,	<i>,</i> ,,
ALSK_0	76%	±0,08	22,51	±0,29	0,67	±0,79	0,37	±2,18	0,20	±2,82	0,18	±2,43	0,07	±2,65
169_R_		%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	75.48	+0.09	22.31	+0.3	1.32	+0.59	0.41	+2.47	0.24	+2.72	0.16	+2.51	0.09	+2.5
169_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
02														
ALSK_0	78,10 ∞∕	±0,08 ∞	20,17 v	±0,31 ∞	0,97 %	±0,68 ∞	0,30 %	±3,06 ∞	0,19 %	±1,98 ∞	0,13 %	±2,76	0,14 %	±1,89 %
03	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	77,02	±0,08	21,17	±0,3	1,09	±0,63	0,22	±3,55	0,17	±3,08	0,22	±2,4	0,11	±2,17
169_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
04 AISK 0	78 69	+0.08	20.04	+0.32	0.65	+0.83	0 14	+2 93	0.19	+2 97	0.18	+2 74	0.11	+2 17
169_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
05														
ALSK_0	76,73 ∞∕	±0,08	21,69 v	±0,29 ∞	0,98 %	±0,65 ∞	0,20 %	±3,36 ∞	0,26 %	±2,49 ∞	0,03 %	±4,48 ∞	0,11 %	±2,05
165_K_ 06	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	77,08	±0,08	20,43	±0,3	1,43	±0,55	0,72	±1,95	0,15	±3,01	0,10	±2,89	0,09	±2,34
169_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	75 57	+0.08	22 22	+0.20	0.61	+0.85	0.45	+1 9/	0.22	+2 65	0.22	+2.22	0.20	+1.6
169 R	75,54 %	±0,08 %	~~,13 %	±0,29 %	0,01 %	±0,85 %	0,45 %	±±,64 %	0,23 %	±2,05 %	0,23 %	±2,33 %	0,20 %	,0 %
08														
ALSK_0	78,65	±0,08	19,82	±0,31	0,71	±0,79	0,38	±2,3	0,24	±2,69	0,11	±2,84	0,10	±2,21
169_R_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	79,02	±0,08	19,60	±0,31	0,55	±0,89	0,29	±2,19	0,21	±2,83	0,18	±2,64	0,14	±1,86
169_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
10			20.01		0.00		0.42		0.24		0.12		0.12	
ert	77,54 %		20,61 %		0,96 %		0,43 %		0,21 %		0,13 %		0,12 %	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
ALSK_0 170_0_ 01	77,97 %	±0,08 %	20,19 %	±0,3 %	0,92 %	±0,68 %	0,21 %	±1,48 %	0,24 %	±2,58 %	0,10 %	±2,84 %	0,38 %	±1,12 %
ALSK_0 170_0_	77,40 %	±0,08 %	20,61 %	±0,31 %	0,75 %	±0,77 %	0,29 %	±1,28 %	0,25 %	±2,59 %	0,09 %	±3,38 %	0,61 %	±0,9 %
02														
ALSK_0 170_0_	79,98 %	±0,08 %	17,39 %	±0,33 %	1,44 %	±0,53 %	0,60 %	±2,1 %	0,29 %	±2,39 %	0,11 %	±3,27 %	0,19 %	±1,52 %
03	81.03	+0.08	17 67	+0.34	0.62	+0.85	0.05	+2 13	0.35	+1 68	0.05	+3 01	0.23	+1 /3
170_0_ 04	%	%	%	⊻0,54 %	%	¥0,85 %	%	%	%	%	%	%	%	*1,43 %
ALSK_0	72,52	±0,1	22,75	±0,32	1%	±0,74	0,90	±0,85	0,42	±2,17	0,11	±2,37	2,29	±0,53
170_O_ 05	%	%	%	%		%	%	%	%	%	%	%	%	%
ALSK_0	78,09 %	±0,08	19,68 %	±0,31	1,23	±0,59	0,48 %	±2,04	0,24	±2,67	0,10	±3,48	0,19 %	±1,59
06	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	76,18	±0,09	21,73	±0,31	0,48	±0,99	0,16	±1,15	0,32	±1,56	0,17	±2,41	0,95	±0,75
170_0_ 07	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	78.43	±0.08	20.03	±0.31	0.49	±0.94	0.43	±2.54	0.23	±2.69	0.10	±3.06	0.28	±1.32
170 <u>0</u>	%	%	%	%	%	%	%	%	%	%	%	%	%	%
08	70 52	10.00	10.22	10.21	0.50	10.07	0.70	11.00	0.24	12.21	0.14	12.02	0.24	11 17
ALSK_0 170 O	78,52 %	±0,08 %	19,32 %	±0,31 %	0,56 %	±0,87 %	0,78 %	±1,68 %	0,34 %	±2,21 %	0,14 %	±2,62 %	0,34 %	±1,17 %
09	-													
ALSK_0	79%	±0,08	19,42	±0,31	0,68	±0,79	0,17	±1,52	0,29	±2,35	0,09	±3,26	0,35	±1,17
170_0_ 10		%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	75,25	±0,09	22,22	±0,31	0,39	±1,11	0,64	±2,17	0,36	±1,4	0,05	±3,23	1,10	±0,71
170_R_ 01	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	70,95	±0,09	24,57	±0,29	1%	±0,71	0,89	±0,4	0,43	±2,04	0,05	±2,78	2,10	±0,54
170_R_	%	%	%	%		%	%	%	%	%	%	%	%	%
	74 41	+0.09	22.61	+0 31	0.62	+0 91	0.05	+0 58	0.29	+2 52	0 11	+2 92	1 93	+0.55
170_R_ 03	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	76,11	±0,09	20,52	±0,31	1,34	±0,59	0,36	±0,76	0,36	±2,2	0,13	±3,02	1,18	±0,67
170_R_ 04	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	79,23	±0,08	19,18	±0,31	0,58	±0,84	0,28	±1,4	0,35	±2,16	0,09	±2,44	0,30	±1,24
170_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	73,52	±0,09	22,68	±0,3	0,61	±0,89	0,55	±0,44	0,30	±2,39	0,14	±2,72	2,19	±0,51
170_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
06	76.76	10.00	21.00	10.2	0.45	10.00	0.12	10.01	0.20	12.20	0.12	10.71	0.55	10.05
ALSK_0 170 R	76,76 %	±0,08 %	21,68 %	±0,3 %	0,45 %	±0,99 %	0,13 %	±0,61 %	0,30 %	±2,36 %	0,13 %	±2,71 %	0,55 %	±0,95 %
07														
ALSK_0	71,05	±0,1	23,58	±0,31	0,63	±0,94	0,92	±1,06	0,45	±2,08	0,07	±3,74	3,31	±0,45
170 <u>k</u> 08	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0 170_R_	78,45 %	±0,08 %	19,47 %	±0,31 %	0,83 %	±0,72 %	0,62 %	±2,08 %	0,32 %	±2,28 %	0,12 %	±2,61 %	0,20 %	±1,56 %
09	70.00	10.00	10.40	10.21	0.00	10.00	0.25	12.24	0.20	10.00	0.40	12.05	0.40	14 50
ALSK_0 170_R_ 10	79,06 %	±0,08 %	19,48 %	±0,31 %	0,63 %	±0,83 %	0,25 %	±3,31 %	0,29 %	±2,39 %	0,10 %	±2,95 %	0,19 %	±1,59 %
Mittelw	76.70		20,74		0.76		0.44		0.32		0.10		0.94	
ert	%		%		%		%		%		%		%	

Messun	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
g	wt%		wt%		wt%		wt%		wt%		wt%		wt%	10.10
ALSK_0	47,89 %	±0,13 ∞	49,76 ∞	±0,22 ∞	0,50 %	±1,11 ∞	1,05 %	±1,83 ∞	0,18 %	±3,03 ∞	0,52 %	±1,87 ∞	0,10 %	±3,13 %
01	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	49,35	±0,12	48,81	±0,22	0,44	±1,19	0,64	±2,36	0,20	±2,84	0,46	±1,87	0,10	±3,05
171_O_ 02	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	40,97	±0,14	56,74	±0,2	0,29	±1,44	1,04	±1,8	0,15	±3,1	0,52	±1,85	0,28	±1,9
171_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
03														
ALSK_0	29,15 %	±0,17 ∞	69,42 ∞	±0,19 ∞	0,15 %	±2,11 ∞	0,34 %	±3,25 ∞	0,19 %	±2,66 ∞	0,57 %	±1,71 ∞	0,17 %	±2,68 %
04	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	34,56	±0,15	63,55	±0,19	0,13	±2,15	0,94	±1,86	0,12	±3,35	0,61	±1,61	0,10	±2,38
171_0_ 05	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	18,74	±0,21	78,37	±0,18	0,26	±1,62	1,63	±1,49	0,13	±2,9	0,79	±1,39	0,08	±2,96
171_0_ 06	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	57.60	±0.11	41.03	±0.24	0.41	±1.2	0.26	±3.65	0.16	±2.22	0.46	±1.61	0.08	±3.35
171_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
07	47.44	10.12	E40 (10.22	0.77	10.02	0.20	12.62	0.40	12.02	0.55	14.04	0.10	12.22
ALSK_0 171 0	47,11 %	±0,13 %	51%	±0,22 %	0,77 %	±0,92 %	0,28 %	±3,63 %	0,19 %	±3,02 %	0,55 %	±1,91 %	0,10 %	±3,22 %
08	,,,	<i>,</i> °		70	,,,	,,,	,,,	,,,	,,,	,,,	,,,	,,,	,,,	,,,
ALSK_0	60,29	±0,1	37,33	±0,24	0,82	±0,8	0,86	±1,89	0,22	±2,68	0,34	±1,88	0,13	±2,35
171_0_ 09	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	60,73	±0,1	37,26	±0,24	0,27	±1,4	1,11	±1,67	0,17	±3,02	0,33	±1,68	0,13	±2,41
1/1_0_ 10	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0	51,65	±0,12	46,56	±0,22	0,88	±0,8	0,19	±4,17	0,17	±3,03	0,49	±1,79	0,07	±3,2
171_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0	50.85	+0.12	46.86	+0.22	1.30	+0.67	0.39	+2.95	0.13	+3.47	0.44	+1.55	0.04	+3.17
171_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
02														
ALSK_0	52,29 %	±0,12	46,33 v	±0,22	0,39 %	±1,23	0,31 %	±3,3	0,19 %	±2,89	0,42	±1,74	0,06 %	±3,42
03	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	51,06	±0,12	46,59	±0,22	0,79	±0,87	0,86	±2%	0,17	±3,13	0,46	±1,79	0,08	±3,45
171_R_	%	%	%	%	%	%	%		%	%	%	%	%	%
ALSK 0	36.55	±0.15	62.35	±0.2	0.19	±1.83	0.20	±4.24	0.18	±2.83	0.48	±1.82	0.05	±4.12
171_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
05														
ALSK_0	38,92 %	±0,13 %	59,81 %	±0,19 %	0,17 %	±1,83 %	0,53 %	±2,44 %	0,13 %	±3,26 %	0,38 %	±1,81 %	0,06 %	±3,25 %
06	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK_0	46,15	±0,13	52,26	±0,21	0,38	±1,25	0,56	±2,46	0,13	±3,4	0,47	±1,84	0,05	±3,04
171_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	10 20	+0 12	48 27	+0 22	0 40	+1 25	0 72	+2 21	0 12	+7 10	0 12	+1 9/	0.06	+2 /1
171 R	49,69 %	±0,12 %	48,57 %	±0,22 %	0,40 %	±1,25 %	%	±2,21 %	0,15 %	±2,18 %	0,45 %	±1,84 %	0,00 %	13,42 %
08														
ALSK_0	48,57	±0,12	49,64	±0,22	0,61	±1%	0,51	±2,62	0,14	±3,4	0,48	±1,9	0,06	±3,4
1/1_R_ 09	%	%	%	%	%		%	%	%	%	%	%	%	%
ALSK_0	48,81	±0,12	49,58	±0,22	0,19	±1,78	0,73	±2,18	0,14	±2,54	0,49	±1,82	0,05	±3,3
171_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
10 Mittelw	46.06		52 08		0.47		0.66		0.16		0.48		0.09	
ert	%		%		%		%		%		%		%	

NEW VEW VEW <th>Messung</th> <th>Cu in</th> <th></th> <th>Ag in</th> <th></th> <th>Zn in</th> <th></th> <th>Sn in</th> <th></th> <th>Pb in</th> <th></th> <th>Au in</th> <th></th> <th>Fe in</th> <th></th>	Messung	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
ALS, 0171N 0.1.47 0.1.7 0.1.7 0.1.7 0.1.7 0.1.7 0.1.7 0.1.7 0.1.7 0.0.7		wt%		wt%		wt%		wt%		wt%		wt%	12.00	wt%	
1 1	ALSK_01/1N 01 0523 0	61,47 %	±0,1 %	37,65 %	±0,24 %	0,35 %	±1,21 %	0,05 %	±2,28 %	0,14 %	±3,35 %	0,28 %	±2,09 %	0,06 %	±3,33 %
AISK 0171N 01 0523 0 02 20.22 N 0.18 7.74 N 0.16 0.15 *1.92 N 0.62 N 125 N 0.42 41.83 N 0.76 11.6 N 0.08 1.4.8 N AISK 0171N 01 0523 0 01 0523 0 0 01 0523 0 0 01 0523 0 0 01 0523 0 0 01 0523 0 0 0 01 0523 0 0 0 01 0523 0 0 0 0 0 05 0.102 1 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01_0525_0_	70	70	70	70	70	70	70	70	70	70	70	70	70	70
OL D2 D3 % <th>ALSK_0171N</th> <th>20,22</th> <th>±0,18</th> <th>77,94</th> <th>±0,16</th> <th>0,15</th> <th>±1,92</th> <th>0,62</th> <th>±2,15</th> <th>0,24</th> <th>±1,83</th> <th>0,76</th> <th>±1,26</th> <th>0,08</th> <th>±3,48</th>	ALSK_0171N	20,22	±0,18	77,94	±0,16	0,15	±1,92	0,62	±2,15	0,24	±1,83	0,76	±1,26	0,08	±3,48
UZ	01_0523_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Diroc Site 0 Orac Solar	UZ ALSK 0171N	50.67	+0.13	18 15	+0.24	0.35	+1 /13	0.12	+2 58	0.12	+3 03	0.22	+2 54	0.07	+3 02
03 <th>01 0523 0</th> <th>%</th>	01 0523 0	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0171M 52,68 91,012 45,17 0,02 45,17 0,06 43,93 Od 01,0523,0. %	03														
DI_DG23_D_ % % % % % % % % % % % % % % % % % %	ALSK_0171N	52,68	±0,12	45,77	±0,23	0,31	±1,4	0,83	±1,69	0,12	±3,11	0,23	±2,37	0,06	±3,93
AISK 0171N 01_0523_0 49,62 % ±0.12 % 49,39 % ±0.22 % ±1,43 % 0,10 % ±2,69 % 0,17 % ±3,11 % 0,37 % ±2,80 % 0,37 % ±3,97 % ±3,17 % 0,37 % ±2,10 % ±3,10 % 0,37 % ±3,11 % 0,11 ±3,320 % 0,66 ±3,12 0,26 ±1,11 0,17 ±1,49 % 0,14 ±1,320 % 0,26 ±1,27 0,30 ±1,44 0,07 ±4,23 01_0523_0 %	01_0523_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
D1_0523_0_ 5 % <	ALSK 0171N	49,62	±0,12	49,39	±0,22	0,29	±1,43	0,10	±2,69	0,17	±3,1	0,37	±2%	0,06	±3,97
05 AISK 0171N 50.32 0.01 48.83 0.02 0.37 ±1.18 0.01 ±3.1 01 0523.0 % </th <th>01_0523_0_</th> <th>%</th> <th></th> <th>%</th> <th>%</th>	01_0523_0_	%	%	%	%	%	%	%	%	%	%	%		%	%
ALSK 0171N S0.22 0.11 48,83 10.2 0.37 11.18 0.01 12.33 0.11 13.29 0.08 13.1 06 8 %<	05	50.00		10.00		0.07							1.00		10.1
Display N </th <th>ALSK_01/1N 01 0523 0</th> <th>50,32 %</th> <th>±0,11 %</th> <th>48,83 %</th> <th>±0,2 %</th> <th>0,37 %</th> <th>±1,18 %</th> <th>0,01 %</th> <th>±2,33 %</th> <th>0,11 %</th> <th>±3,29 %</th> <th>0,28 %</th> <th>±1,93 %</th> <th>0,08 %</th> <th>±3,1 %</th>	ALSK_01/1N 01 0523 0	50,32 %	±0,11 %	48,83 %	±0,2 %	0,37 %	±1,18 %	0,01 %	±2,33 %	0,11 %	±3,29 %	0,28 %	±1,93 %	0,08 %	±3,1 %
AISK 0171N 01_0523_0 52.19 % ±0.12 46.70 % ±0.23 % 0.49 % ±1.11 % 0.17 % ±1.49 % 0.14 % ±3.32 % 0.26 % ±2.2 % 0.05 % ±4.23 % AISK 0171N 01_0523_0 49.45 % ±0.13 % 49.18 % ±0.23 % 0.47 % ±1.2 % 0.36 % ±1.8 % 0.17 % ±3.32 % 0.30 % ±1.94 % 0.07 % ±3.29 % 0.16 % ±2.67 % 0.08 % ±3.22 % 0.11 % ±3.22 % 0.11 % ±3.22 % 0.11 % ±3.23 % 0.17 % ±3.29 % 0.16 % ±2.67 % 0.08 % ±3.22 % 0.11 % ±3.23 % 0.11 % ±3.29 % 0.11 % ±3.29 % 0.16 % ±3.22 % 0.07 % ±3.26 % 0.07 % ±3.29 % 0.11 % ±3.29 % 0.18 % ±3.22 % 0.06 % ±4.21 % 0.025 % ±4.03 % 0.12 % ±4.03 % ±4.03 % ±4.03 % ±4.03 % ±4.03 % ±4.03 % ±4.03 % ±4.03 <th>06</th> <th>70</th>	06	70	70	70	70	70	70	70	70	70	70	70	70	70	70
O1_0523_0_ 77 %	ALSK_0171N	52,19	±0,12	46,70	±0,23	0,49	±1,11	0,17	±1,49	0,14	±3,32	0,26	±2,2	0,05	±4,23
01/ 01_0523_0_ 08 49,45 10.13 % 49,18 % 10.23 % 0,47 % 11.2 % 0,36 % 11.8 % 0,17 % 13,19 % 0,30 11.94 % 0,07 % 14/% ALSK_0171N 09 58,55 10.11 39,80 10.25 0,44 11.17 0.80 12,03 0.17 13,19 0.16 12,67 0.08 13,22 ALSK_0171N 01_0523_0_ 58,57 10.11 39,87 10.25 0.41 11.21 0.62 12,39 0.11 43,97 0.25 12,33 0.07 14,03 ALSK_0171N 55,29 10.11 39,87 10.23 0.38 11.23 0.37 12,11 0.09 44,21 0.25 12,26 0.05 14,03 01 55,29 10.11 43,57 10.23 0.38 11.23 0.37 12,11 0.09 44,21 0.25 12,26 0.05 14,03 01_0523_R_ 61,24 40,1 37,73 10,24 0.61 11,08 0.14 <th>01_0523_0_</th> <th>%</th>	01_0523_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALL O.I.D. ALL ALL<	07 AISK 0171N	49 45	+0.13	49 18	+0.23	0 47	+1 2	0.36	+1 8	0 17	+3 19	0.30	+1 94	0.07	+4%
08	01_0523_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	= 175
ALSK_0171N 01_0523_0_ 58,67 % 10.11 % 39,80 % 40,25 % 0,44 % +1,17 % 0,80 % +2,03 % 0,11 % +3,29 % 0,16 % +2,67 % 0,08 % +2,67 % 0,01 % +2,63 % 0,05 +2,62 0,05	08														
D1_022_0 N<	ALSK_0171N	58,55 %	±0,11	39,80 %	±0,25	0,44 %	±1,17 ∞	0,80 %	±2,03	0,17 %	±3,29 ∞	0,16 %	±2,67	0,08 %	±3,22
ALSK_0171N 01_0523_0 (0 58,67 (%) ±0,11 % 39,87 % ±0,25 % 0,41 % ±1,21 % 0,62 % ±2,39 % 0,11 % ±3,97 % 0,25 % ±2,33 % 0,07 % ±3,85 % ALSK_0171N 01 55,29 % ±0,11 % 43,57 % ±0,23 % 0,38 % ±1,23 % 0,37 % ±2,11 % 0,09 ±4,21 % 0,25 ±2,26 % 0,05 ±4,03 % ALSK_0171N 01 48,89 % ±0,12 49,47 ±0,22 0,61 ±0,99 % 0,66 ±1,86 % 0,14 ±3,29 % 0,18 ±2,52 0,05 ±4,425 O1_0523 R 02 5 ±0,11 37,73 ±0,24 0,37 ±1,19 0,21 ±1,77 0,13 ±3,52 0,26 ±2,17 0,05 ±2,58 O1_0523 R 03 % </th <th>01_0323_0_</th> <th>70</th>	01_0323_0_	70	70	70	70	70	70	70	70	70	70	70	70	70	70
01_0523_0 10 % <	ALSK_0171N	58,67	±0,11	39,87	±0,25	0,41	±1,21	0,62	±2,39	0,11	±3,97	0,25	±2,33	0,07	±3,65
10 11 10 11 11 10 11	01_0523_0_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Nine (2): I. M. %	10 AISK 0171N	55 29	+0 11	43 57	+0.23	0 38	+1 23	0 37	+2 11	0.09	+4 21	0.25	+2.26	0.05	+4 03
D1 ALSK_0171N 64,899 ±0,12 49,47 ±0,22 0,61 ±0,999 0,66 ±1,86 0,14 ±3,29 0,18 ±2,52 0,05 ±4,25 O1_0523_R_0 %	O1_0523_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0171N 48,89 +0.12 49,47 +0.22 0,61 ±0,99 0,66 ±1,86 0,14 ±3,29 0,18 ±2,52 0,05 ±4,25 O1_0523_R %<	01														
D1_053_1_ A	ALSK_0171N	48,89 %	±0,12	49,47 ∞	±0,22 ∞∕	0,61 %	±0,99 ∞	0,66 %	±1,86 ∞	0,14 %	±3,29 ∞	0,18 %	±2,52 ∞	0,05 %	±4,25 ∞∕
ALSK_0171N 61,24 ±0,1 37,73 ±0,24 0,37 ±1,19 0,21 ±1,77 0,13 ±3,52 0,26 ±2,17 0,05 ±2,58 O1_0523_R %	01_0525_K_ 02	70	70	70	70	70	70	70	70	70	70	70	70	70	70
O1_0523_R 03 % <	ALSK_0171N	61,24	±0,1	37,73	±0,24	0,37	±1,19	0,21	±1,77	0,13	±3,52	0,26	±2,17	0,05	±2,58
O3 ALSK_0171N 58,96 ±0,11 39,79 ±0,23 0,44 ±1,11 0,33 ±1,73 0,16 ±3,15 0,27 ±2,12 0,05 ±3,35 O1_0523_R % <	O1_0523_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0171N 50,50 10,11 50,70 10,73 11,71 0,50 11,75 0,10 13,13 0,10 13,13 0,10 13,13 0,10 13,13 0,10 13,13 0,10 11,12 0,03 11,13 0,10 13,13 0,10 13,13 0,10 13,13 0,10 13,13 0,10 13,13 0,10 13,13 0,11 43,22 0,03 13,13 0,06 11,67 0,15 13,22 0,29 12,05 0,06 13,88 01_0523_R_ % <td< th=""><th>U3</th><th>58.96</th><th>+0 11</th><th>30 70</th><th>+0.23</th><th>0.44</th><th>+1 11</th><th>0 33</th><th>+1 73</th><th>0.16</th><th>+3 15</th><th>0.27</th><th>+2 12</th><th>0.05</th><th>+3 35</th></td<>	U3	58.96	+0 11	30 70	+0.23	0.44	+1 11	0 33	+1 73	0.16	+3 15	0.27	+2 12	0.05	+3 35
04 ALSK_0171N O1_0523_R o5 53,87 % ±0,11 % 45,24 % ±0,22 % ±1,33 % 0,06 % ±1,67 % 0,15 % ±3,22 % 0,29 % ±2,05 % 0,06 % ±3,88 % O1_0523_R o5 %	O1_0523_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0171N 53,87 ±0,11 45,24 ±0,22 0,32 ±1,33 0,06 ±1,67 0,15 ±3,22 0,29 ±2,05 0,06 ±3,88 O1_0523_R %	04														
OI_GOIS_IR_ OS N	ALSK_0171N	53,87 %	±0,11 %	45,24 ∞	±0,22 %	0,32 %	±1,33 ∞	0,06 %	±1,67 ∞	0,15 ∝	±3,22 ∞	0,29 %	±2,05 %	0,06 %	±3,88 %
ALSK_0171N 01_0523_R_ 06 60,71 % ±0,1 % 38,15 % ±0,24 % 0,49 % ±1,05 % 0,23 % ±3,16 % 0,15 % ±3,27 % 0,21 % ±2,43 % 0,05 % ±3,69 % O1_0523_R_ 06 %	01_0525_K_ 05	70	70	70	70	70	70	70	70	70	70	70	70	70	70
O1_0523_R 06 % <t< th=""><th>ALSK_0171N</th><th>60,71</th><th>±0,1</th><th>38,15</th><th>±0,24</th><th>0,49</th><th>±1,05</th><th>0,23</th><th>±3,16</th><th>0,15</th><th>±3,27</th><th>0,21</th><th>±2,43</th><th>0,05</th><th>±3,69</th></t<>	ALSK_0171N	60,71	±0,1	38,15	±0,24	0,49	±1,05	0,23	±3,16	0,15	±3,27	0,21	±2,43	0,05	±3,69
OG ALSK_0171N 55,23 ±0,11 43,92 ±0,22 0,36 ±1,22 0,07 ±2,47 0,15 ±3,2 0,22 ±2,28 0,05 ±3,81 O1_0523_R_0 %	O1_0523_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
New_off in Solution Solutitettettettettettettettettettettettette	06 AISK 0171N	55 23	+0 11	43 92	+0 22	0.36	+1 22	0.07	+2 47	0 15	+3.2	0.22	+2 28	0.05	+3 81
07 ALSK_0171N 51,95 ±0,11 46,64 ±0,22 0,28 ±1,42 0,67 ±1,95 0,15 ±3,21 0,27 ±1,81 0,04 ±4,35 01_0523_R %	O1_0523_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK_0171N 51,95 ±0,11 46,64 ±0,22 0,28 ±1,42 0,67 ±1,95 0,15 ±3,21 0,27 ±1,81 0,04 ±4,35 O1_0523_R_0 % <th>07</th> <th></th>	07														
O1_0523_R_08 70 <th70< th=""> 70 70</th70<>	ALSK_0171N	51,95 %	±0,11 %	46,64 %	±0,22 %	0,28 %	±1,42 %	0,67 %	±1,95 %	0,15 %	±3,21 %	0,27 %	±1,81 %	0,04 %	±4,35 %
ALSK_0171N 58,44 ±0,11 40,45 ±0,24 0,48 ±1,11 0,16 ±2,39 0,14 ±3,55 0,28 ±2,16 0,05 ±3,26 01_0523_R_0 % <th>01_0525_K_ 08</th> <th>70</th>	01_0525_K_ 08	70	70	70	70	70	70	70	70	70	70	70	70	70	70
O1_0523_R_ 09 %	ALSK_0171N	58,44	±0,11	40,45	±0,24	0,48	±1,11	0,16	±2,39	0,14	±3,55	0,28	±2,16	0,05	±3,26
OS State St	O1_0523_R_	%	%	%	%	%	%	%	%	%	%	%	%	%	%
O1_0523_R_ %	09 ALSK 0171N	58 53	+0 11	40 27	+0 24	0.47	+1 12	0.27	+2 47	0.12	+3 88	0.29	+2 16	0.05	+3 95
10 Mittelwert 53,35 45,44 0,39 0,34 0,14 0,28 0,06 % % % % % % % %	01_0523_R_	%	%	%	%	%	~,-z %	%	%	%	%	%	%	%	, %
Mittelwert 53,35 45,44 0,39 0,34 0,14 0,28 0,06 % % % % % % % %	10														
	Mittelwert	53,35 %		45,44 %		0,39 %		0,34 %		0,14 %		0,28 %		0,06 %	

Messung	Cu in		Ag in		Zn in		Sn in		Pb in		Au in		Fe in	
	wt%		wt%		wt%		wt%		wt%		wt%		wt%	
ALSK_0171N	10,53	±0,27	87,10	±0,16	0,10	±2,43	0,39	±2,85	0,28	±1,76	0,67	±1,35	0,93	±1,15
01_0523_kB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0171N	25.98	±0.19	37.99	±0.23	0.47	±1.27	0.38	±2.74	0.13	±3.25	0.31	±2.15	34.74	±0.16
O1_0523_kB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_02														
ALSK_0171N	13,77	±0,23	82,20	±0,15	0,11	±2,26	0,67	±2,1	0,31	±1,78	0,76	±1,25	2,19	±0,72
O1_0523_kB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	47.50	10.2	00.42	10.46	0.11	12.27	0.00	14.07	0.22	12.05	0.50	14.22	0.17	12.50
ALSK_0171N	17,58 ∞	±0,2	80,43 %	±0,16 ∞	0,11	±2,27	0,88 %	±1,87	0,23 %	±2,05 ∞	0,59 %	±1,32	0,17	±2,58
01_0525_KB	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK 0171N	12.08	±0.38	85.54	±0.24	0.06	±4.84	1.65	±2.11	0.15	±3.98	0.47	±2.28	0.05	±7.57
O1_0523_kB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_05														
ALSK_0171N	14,52	±0,25	74,89	±0,18	0,13	±2,45	1,08	±1,85	0,24	±2,31	0,66	±1,27	8,49	±0,41
O1_0523_kB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_06	47.00								0.05		0.62			
ALSK_01/1N	17,69 %	±0,21 %	80,38 %	±0,16 %	0,20 %	±1,75 %	0,54 %	±2,44 %	0,25 %	±1,93 %	0,62 %	±1,39 %	0,32 %	±1,94 %
01_0323_KB	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK 0171N	19,87	±0,19	77,46	±0,17	0,18	±1,83	0,07	±4,12	0,24	±2,08	0,65	±1,43	1,53	±0,87
O1_0523_kB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_08														
ALSK_0171N	23,52	±0,23	74,90	±0,22	0,14	±2,72	0,63	±2,93	0,18	±3,28	0,55	±2,04	0,08	±5,06
01_0523_kB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_03 ALSK 0171N	12 14	+0.38	86.04	+0.24	0.16	+2 97	1.03	+2 67	0 14	+3 77	0.43	+2 1	0.06	+7 01
O1 0523 kB	12,14 %	±0,58 %	80,04 %	±0,24 %	%	*2,57 %	%	*2,07 %	%	*3,77 %	%	±2,1 %	%	⊻7,01 %
_10														
ALSK_0171N	10,89	±0,29	87,41	±0,17	0,11	±2,58	0,59	±2,56	0,22	±2,34	0,73	±1,43	0,04	±4,13
O1_0523_gB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_01	45.53				0.40				0.07					
ALSK_0171N	15,57 %	±0,23 %	82,13 %	±0,17 %	0,13 %	±2,24 %	1,10 %	±1,// %	0,27 %	±2,03 %	0,74 %	±1,37 %	0,06 %	±3,81 %
01_0525_gb	70	70	70	70	70	70	70	70	70	70	70	70	70	70
ALSK 0171N	12,36	±0,25	85,72	±0,16	0,12	±2,26	0,84	±1,96	0,25	±1,94	0,65	±1,39	0,06	±3,98
O1_0523_gB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_03														
ALSK_0171N	16,91	±0,24	81,42	±0,18	0,16	±2,21	0,58	±2,66	0,23	±2,44	0,67	±1,6	0,03	±5,19
01_0523_gB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
 ALSK 0171N	39,11	+0.18	59.80	+0.26	0.24	+2.11	0.19	+4.99	0.18	+3.41	0.45	+2.57	0.03	+4.5
O1_0523_gB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_05														
ALSK_0171N	37%	±0,26	61,17	±0,35	0,13	±4,03	1,05	±3,27	0,09	±5,95	0,30	±3,7	0,26	±3,7
O1_0523_gB		%	%	%	%	%	%	%	%	%	%	%	%	%
	16.66	+0.24	Q1 C4	+0.19	0.16	+2 10	0.67	+2.47	0.22	+2.20	0.60	+1 64	0.04	+4.69
ALSK_0171N 01 0523 gB	10,00	±0,24 %	81,04 %	±0,18 %	0,16 %	±2,19 %	0,67 %	±2,47 %	0,23 %	±2,29 %	0,60 %	±1,64 %	0,04 %	±4,08 %
07	70	<i>,</i> ,,	<i>,</i> ,,	70	<i>,</i> ,,	70	<i>,</i> ,,	70	70	70	<i>,</i> ,,	<i>,</i> ,,	<i>,</i> ,,	<i>,</i> ,,
ALSK_0171N	12,92	±0,25	84,99	±0,17	0,11	±2,51	1,07	±1,81	0,24	±2,02	0,62	±1,39	0,05	±3,78
O1_0523_gB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_08														
ALSK_0171N	9,94 %	±0,3	88,39 %	±0,17	0,09	±2,87	0,64 %	±2,39	0,25 %	±1,88	0,63 %	±1,47	0,04	±3,63
01_0523_gB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ALSK 0171N	31.94	±0.19	66.68	±0.23	0.53	±1.34	0.19	±5.2	0.19	±3.26	0.43	+2.39	0.04	±4,49
O1_0523 gB	%	%	%	%	%	%	%	%	%	%	%	%	%	%
_10														
Mittelwert	18,55		77,31		0,17		0,71		0,22		0,58		2,46	
	%		%		%		%		%		%		%	